Does the C0\/1D \/a<<ine Cause Cancer ?
I was quite surprised last week to find a one-line Google Review of my medical practice by a person who is not a patient in my office —a young mother from Topeka, Kansas, with no basic knowledge of medicine or molecular biology. Here is the Review, which was deleted by Google a few days later and is no longer visible on the Internet:
Sharing with your patients that the C9\/1D \/a<<ine caused their cancer is extremely negligent and not documented as proper medical advice.
As it turns out there are at least 100 studies in the medical literature suggesting seventeen mechanisms for carcinogenicity for the C0\/1D \/a<<ine. So, let us ask this question:
Does the C0\/1D \/a<<ine Initiate, Accelerate or Reactivate Cancer?
Thanks and credit goes to Nicolas Hulscher, MPH for his article on this question, and to Mathilde Debord who did a comprehensive literature review on mechanisms the mRNA injections may induce, accelerate, or reactivate cancer through 17 distinct biologic mechanisms.
17 Biological Mechanisms which may Initiate, Accelerate, or Reactivate Malignant Processes taken from 100 Peer-Reviewed Studies:
1. Genome Instability
mRNA may be reverse-transcribed and integrated into host DNA, triggering mutations that initiate cancer.
2. Immune Escape
The spike protein binds and inhibits tumor suppressor genes like p53 and BRCA1, shielding cancer cells from immune destruction.
3. Impaired DNA Repair Mechanism
The spike protein interferes with essential DNA repair enzymes, increasing the risk of unchecked mutations.
4. Chronic Inflammation
Lipid nanoparticles and spike protein cause long-lasting inflammation, a well-known driver of cancer.
5. Dysregulation of the Immune System
Suppression of T cells and type I interferon weakens cancer surveillance and promotes immune evasion.
6. RNA Disruption
Codon optimization disrupts microRNA networks, destabilizing cell growth regulation and apoptosis.
7. Activation of Oncogenic Pathways
The spike protein indirectly activates MAPK and PI3K/mTOR signaling, fueling tumor growth and metastasis.
8. Tumor Microenvironment Alteration
Lipid nanoparticles accumulate in tumors, enhancing permeability and potentially accelerating cancer spread.
9. Awakening Dormant Cancers
Post-vaccination inflammation and immune disruption may trigger recurrence in patients previously in remission.
10. Alteration of Immune Surveillance
Modified mRNA blocks toll-like receptors, making tumor cells “invisible” to the immune system.
11. Frameshift Errors
The synthetic mRNA sometimes produces unintended, aberrant proteins, contributing to oncogenic risk.
12. Multiple Injections
Repeated doses exhaust the immune system and drive class switching to IgG4, promoting tolerance to tumors.
13. DNA Contamination
Residual plasmid DNA found in vaccine vials is replication-competent and could integrate into host genomes.
14. Oncogenic SV40 DNA Sequences
SV40 promoter sequences in Pfizer vials may facilitate genome insertion—this same element is used to induce tumors in lab animals.
15. Deregulation of the Renin-Angiotensin System (RAS)
Spike-induced AT1R activation fosters oxidative stress and uncontrolled cell proliferation.
16. Destruction of the Microbiota
The injections deplete bifidobacteria, weakening immune balance and impairing anti-cancer responses.
17. Increased Resistance to Treatments
Spike exposure prolongs cancer cell survival during chemotherapy, possibly driving treatment resistance.
References for 17 Mechanisms for Carcinogenicity:
17 Ways mRNA Shots May Cause Cancer, According to Over 100 Studies Nicolas Hulscher, MPH Jun 24, 2025
Les vaccins ARNm anti-COVID peuvent induire le cancer de 17 manières distinctes selon plus de 100 études Mathilde Debord | 19 juin 2025
What Causes Cancer in General?
On the question of what causes cancer in general, the answer is complicated and involves a review of animal models of breast cancer. Researchers induce breast cancer in mice by injecting them with carcinogenic chemicals such as DMBA. The agency, IARC, has listed 120 environmental chemicals as carcinogenic to humans. A few are: Tobacco Smoke, Alcoholic Beverages, Asbestos, Benzene, Arsenic, Aflatoxins, Formaldehyde, and Polychlorinated Biphenyls (PCBs). The second animal model is the genetically modified mouse which spontaneously develops breast cancer. Likewise, in humans there are genetic abnormalities which increase cancer risk. So, we can look at any substance or chemical and try to assess the cancer risk. However, it is not possible to state with certainty which of the 120 environmental chemicals or other risk factors have definitively caused a person’s cancer. We can only suggest a benefit in reducing exposure to carcinogenic chemicals and substances in the environment.
Are \/a<<ine Contaminants a Factor for Increased Risk of Cancer?
A number of researchers such as Dr. Theresa Deisher think so. Dr Deisher says there are problems inherent in using human fetal cell cultures for viral replication in the vaccine manufacturing process. Dr. Deisher says the final product contains human fetal cell DNA contamination causing insertional mutagenesis, a mechanism for carcinogenicity. Other independent laboratories (U.S., Canada, Australia, Germany, France) have confirmed plasmid DNA contamination of certain \/a<<ine products. These researchers are: Kevin McKernan, Dr. Soňa Peková, Dr. Phillip Buckhaults, Dr. Ulrike Kämmerer, Dr. David Speicher, FDA Laboratory (Centreville High School Students). Unfortunately, there are no long term carcinogenicity studies for \/a<<ines, so we don’t have this information as yet. Hopefully such studies will be done in the near future.
More on Insertional Mutagenesis from Contaminating DNA fragments
The Florida Department of Heath, Surgeon General Dr Joseph Ladapo has advised all citizens in the State of Florida to decline C0\/1D \/a<<ination due to a number of concerns, one of which is DNA contamination which might lead to insertional mutagenesis, as discussed in a previous newsletter.
Let’s Ask Grok
I asked Grok, the AI program developed by Elon Musk on Twitter:
Assuming there is DNA contamination, could this cause insertional mutagenesis?
Here is Grok’s Answer:
Yes, if DNA contamination is present in a biological system, such as during gene therapy, \/a<<ination, or other interventions involving genetic material, it could potentially cause insertional mutagenesis.
Here’s a concise explanation: Insertional mutagenesis occurs when foreign DNA integrates into the host genome and disrupts or alters the function of genes at or near the insertion site. This can lead to various outcomes, including activation of oncogenes, inactivation of tumor suppressor genes, or other genetic dysregulation, potentially increasing the risk of diseases like cancer.
If a biological product (e.g., a \/a<<ine or gene therapy vector) is contaminated with unintended DNA fragments, these could integrate into the host genome under certain conditions, particularly if the DNA is capable of entering cells and being taken up by the host’s genetic machinery. (Grok’s reply in italics, emphasis mine)
Why Is There Excess Cancer Mortality?
Another disturbing finding is the increase in cancer deaths in national data charts. See rising line (red arrow) indicating excess cancer deaths in the chart below:
Above Chart: Cancer Mortality from CDC Data
===================================
Conclusion: Although we have no long-term studies of carcinogenicity for \/a<<ines, one wonders about the 17 mechanisms of carcinogenicity listed above, one of which is insertional mutagenesis from DNA contamination. The rising excess mortality from cancer is also concerning in the national data chart (see above red arrow). Perhaps it would be a good idea for the NIH to fund long-term carcinogenicity studies so this question can finally be answered. Until then, we can only say we don’t really know for sure.
Articles with related Interest:
Turbo Cancer: Rapid Progression of Lymphoma After C0\/lD Booster
Lies My Government Told Me about the C0\/lD \/a<<ine
Teresa Deisher Concerns About Insertional Mutagenesis
Header Image: Tumor cells under microscope labeled with fluorescent molecules By Vshivkova, Shutterstock stock photo ID: 173060636 under enhanced license to jeffrey dach md (paid)
References:
17 Ways mRNA Shots May Cause Cancer, According to Over 100 Studies Nicolas Hulscher, MPH Jun 24, 2025
Les vaccins ARNm anti-COVID peuvent induire le cancer de 17 manières distinctes selon plus de 100 études Mathilde Debord | 19 juin 2025
100 Peer Review Studies showing mechanism of carcinogenicity:
[1] Acevedo-Whitehouse K, Bruno R. Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses. 2023 Feb;171:111015. https://doi.org/10.1016/j.mehy.2023.111015.
[2] Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the multi-hit hypothesis of oncogenesis Cureus. 2023 Dec 17;15(12):e50703. https://doi.org/10.7759/cureus.50703.
[3] Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, et al. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. 2022 Feb 25;44(3):1115-26. https://doi.org/10.3390/cimb44030073.
[4] Chandramouly G, Zhao J, McDevit S, Rusanov T, Hoang T, Borisonnik N, et al. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Sci Adv. 2021 Jun 11;7(24):eabf1771. https://doi.org/10.1126/sciadv.abf1771.
[5] Zhang L, Richards A, Barrasa MI, Hughes SH, Young RA, Jaenisch R.. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. PNAS. 2021 May 25;118(21):e2105968118. https://doi.org/10.1073/pnas.2105968118.
[6] Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, Tanaka N, et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science. 2023 Jul 28;381(6656):436-443. https://www.doi.org/10.1126/science.ade6967.
[7] Le Dr McKernan a fait cette découverte en analysant la biopsie du cancer du côlon d’une personne ayant reçu quatre injections d’ARNm de Pfizer. Le député et ancien ministre japonais Kazuhiro Haraguchi a déclaré publiquement fin mai que de la protéine Spike vaccinale avait également été retrouvée dans les cellules cancéreuses de son lymphome malin.
[8] https://x.com/tatiann69922625/status/1931708697379480010. Cette découverte a fait l’objet d’une discussion avec l’épidémiologiste Nicolas Hulscher : https://www.thefocalpoints.com/p/breaking-reverse-transcription-cancer.
[9] Singh N, Singh AB. S2 Subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: an in silico study. Transl Oncol. 2020 Oct;13(10):100814. https://doi.org/10.1016/j.tranon.2020.100814. Les résultats de cette étude ont été publiés le 30 juin 2020.
[10] Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, et al. Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis. 2022 Nov 18;13(11):974. https://doi.org/10.1038/s41419-022-05408-1.
[11] Selon Valdes Angues et al., « Les cancers associés aux mutations TP53 incluent le cancer du sein, les sarcomes des tissus osseux et mous, les tumeurs cérébrales et les carcinomes corticosurrénaliens. D’autres cancers moins fréquents incluent la leucémie, le cancer de l’estomac et le cancer colorectal. Les cancers associés à une altération de l’activité de BRCA1 comprennent le cancer du sein, de l’utérus et de l’ovaire chez les femmes, le cancer de la prostate et du sein chez les hommes, et une augmentation modeste du cancer du pancréas chez les hommes et les femmes. Les cancers les plus fréquemment rapportés avec des mutations BRCA2 incluent le pancréas, la prostate chez les hommes et le mélanome ».
[12] Jiang H, Mei YF. SARS-CoV-2 spike impairs DNA damage repair and inhibits v(d)j recombination in vitro. Viruses. 2021;13(10):2056. https://doi.org/10.3390/v13102056. Lien vers l’étude en français : https://www-mdpi-com.translate.goog/1999-4915/13/10/2056?_x_tr_sl=auto&_x_tr_tl=fr&_x_tr_hl=fr&_x_tr_pto=wapp.
[13] Zhang S, El-Deiry WS. SARS-CoV-2 Spike protein inhibits tumor suppressor p53 and creates a vulnerability to cancer. bioRxiv (preprint). 2024 Apr 15. https://doi.org/10.1101/2024.04.12.589252.
[14] Zhang S, El-Deiry WS. Transfected SARS-CoV-2 spike DNA for mammalian cell expression inhibits p53 activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2 proteins in cancer cells and increases cancer cell viability after chemotherapy exposure. Oncotarget. 2024 May 3;15:275-284. https://doi.org/10.18632/oncotarget.28582.
[15] Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022 Apr 15;164:113008. https://doi.org/10.1016/j.fct.2022.113008.
[16] Ambati BK, Varshney A, Lundstrom K, Palú G, Uhal BD, Uversky VN, et al. MSH3 homology and potential recombination link to SARS-CoV-2 furin cleavage site. Front Virol. 2022 Feb;2:834808. https://doi.org/10.3389/fviro.2022.834808.
[17] http://genatlas.medecine.univ-paris5.fr/fiche.php?symbol=MSH3.
[18] Başaran N, Szewczyk-Roszczenko O, Roszczenko P, Vassetzky Y, Sjakste N. Genotoxic risks in patients with COVID-19. Infect Genet Evol. 2025 Apr;129:105728. https://doi.org/10.1016/j.meegid.2025.105728.
[19] Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010 Sep;31(26):6867-75. https://doi.org/10.1016/j.biomaterials.2010.05.027.
[20] Turni C, Lefringhausen A. Covid-19 vaccines: An Australian review. J. Clin. Exp. Immunol. 2022 Sep 21;7(3):491-508. https://blog.fdik.org/2023-03/covid19-vaccinesan-australian-review.pdf.
[21] Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ.The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021 Dec 17;24(12):103479. https://doi.org/10.1016/j.isci.2021.103479.
[22] Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021 Dec 14;54(12):2877-2892.e7. https://doi.org/10.1016/j.immuni.2021.11.001.
[23] Theoharides TC. Potential association of mast cell activation by the SARS-CoV-2 spike protein with cancer progression. Med Hypoth. 2022;160:110774. https://doi.org/10.1016/j.mehy.2022.110774.
[24] Sagala G. Apparent cytotoxicity and intrinsic cytotoxicity of lipid nanomaterials contained in a COVID-19 mRNA Vaccine. IJVTPR. 2023 Oct 16;3(1):957-72. https://doi.org/10.56098/ijvtpr.v3i1.84.
[25] Estep BK, Kuhlmann CJ, Osuka S, Suryavanshi GW, Nagaoka-Kamata Y, Samuel CN, et al. Skewed fate and hematopoiesis of CD34+ HSPCs in umbilical cord blood amid the COVID-19 pandemic. iScience. 2022 Dec 22;25(12):105544. https://doi.org/10.1016/j.isci.2022.105544.
[26] Jahankhani K, Ahangari F, Adcock IM, Mortaz E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie. 2023 May 23;S0300-9084(23)00136-0. https://doi.org/10.1016/j.biochi.2023.05.014.
[27] Australian Therapeutic Goods Administration (TGA). Nonclinical evaluation report: BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATYTM). 2021 Jan. p. 45. https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf#page=45.
[28] Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, et al. COVID-19 mRNA vaccine-induced adverse effects: unwinding the unknowns. Trends Mol Med. 2022 Oct;28(10):800-802. https://doi.org/10.1016/j.molmed.2022.07.008.
[29] Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. ‘Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines. 2023 Aug 17;11(8):2287. https://doi.org/10.3390/biomedicines11082287.
[30] Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat. 2025 Apr 18;260:152662. https://doi.org/10.1016/j.aanat.2025.152662.
[31] Petrosin S, Matende N. Elimination/Neutralization of COVID-19 vaccine-produced spike protein: scoping review. Mathews J Nutr Diet. 2024;7(2):1-23. https://doi.org/10.30654/MJND.10034.
[32] Bhattacharjee B, Lu P, Monteiro VS, Tabachnikova A, Wang K, Hooper WB, et al. Immunological and antigenic signatures associated with chronic illnesses after1 COVID-19 vaccination. MedRxiv (preprint). 2025 Feb 25. https://doi.org/10.1101/2025.02.18.25322379.
[33] Patterson BK, Yogendra R, Francisco EB, Guevara-Coto J, Long E, Pise A, et al. Detection of S1 spike protein in CD16+ monocytes up to 245 days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals. Hum Vaccin Immunother. 2025 Dec;21(1):2494934. https://doi.org/10.1080/21645515.2025.2494934.
[34] Alghamdi A, Hussain SD, Wani K, Sabico S, Alnaami AM, Amer OE, et al. Altered circulating cytokine profile among mRNA-vaccinated young adults: A year-long follow-up study. Immun Inflamm Dis. 2025 Apr;13(4):e70194. https://doi.org/10.1002/iid3.70194.
[35] Ota N, Itani M, Aoki T, Sakurai A, Fujisawa T, Okada Y, et al. Expression of SARS-CoV-2 spike protein in cerebral Arteries: Implications for hemorrhagic stroke post-mRNA vaccination. J Clin Neurosci. 2025 Jun;136:111223. https://doi.org/10.1016/j.jocn.2025.111223.
[36] Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the multi-hit hypothesis of oncogenesis Cureus. 2023 Dec 17;15(12):e50703. https://doi.org/10.7759/cureus.50703.
[37] Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol. 2024 May;267(Pt 1):131427. https://doi.org/10.1016/j.ijbiomac.2024.131427.
[38] Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, et al. mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection. iScience. 2023 Nov 24;26(12):108572. https://doi.org/10.1016/j.isci.2023.108572.
[39] Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022 Apr 15;164:113008. https://doi.org/10.1016/j.fct.2022.113008.
[40] Liu J, Wang J, Xu J, Xia H, Wang Y, Zhang C, et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov. 2021 Oct 26;7(1):99. https://doi.org/10.1038/s41421-021-00329-3.
[41] Ning W, Xu W, Cong X, Fan H, Gilkeson G, Wu X, et al. COVID-19 mRNA vaccine BNT162b2 induces autoantibodies against type I interferons in a healthy woman. J Autoimmun. 2022 Oct;132:102896. https://doi.org/10.1016/j.jaut.2022.102896.
[42] Qin Z, Bouteau A, Herbst C, Igyártó BZ. Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathog. 2022 Sep 2;18(9):e1010830. https://doi.org/10.1371/journal.ppat.1010830.
[43] Föhse FK, Geckin B, Zoodsma M, Kilic G, Liu Z, Röring RJ, et al. The BNT162b2 mRNA vaccine against SARS-CoV-2 reprograms both adaptive and innate immune responses. Clin Immunol. 2023 Oct;255:109762. https://doi.org/10.1016/j.clim.2023.109762.
[44] Abramczyk H, Brozek-Pluska B, Beton K. Decoding COVID-19 mRNA vaccine immunometabolism in central nervous system: human brain normal glial and glioma cells by Raman imaging. Biovrix. 2022 Mar 2. https://doi.org/10.1101/2022.03.02.482639.
[45] Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020 Oct;586(7830):594-599. https://doi.org/10.1038/s41586-020-2814-7.
[46] Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020 Oct;586(7830):589-593. https://doi.org/10.1038/s41586-020-2639-4.
[47] Raisch J, Darfeuille-Michaud A, Nguyen HT. Role of microRNAs in the immune system, inflammation and cancer. World J Gastroenterol. 2013 May 28;19(20):2985-96. https://doi.org/10.3748/wjg.v19.i20.2985.
[48] Han Z, Estephan RJ, Wu X. MicroRNA regulation of T-cell exhaustion in cutaneous T cell lymphoma. J Invest Dermatol. 2022 Mar;142(3 Pt A):603-612.e7. https://doi.org/10.1016/j.jid.2021.08.447.
[49] Mishra R, Banerjea AC. SARS-CoV-2 spike targets USP33-IRF9 axis via exosomal miR-148a to activate human microglia. Front Immunol. 2021 Apr 14;12:656700. https://doi.org/10.3389/fimmu.2021.656700.
[50] Kyriakopoulos AM, Nigh G, McCullough PA, Seneff S. Mitogen activated protein Kinase (MAPK) activation, p53, and autophagy inhibition characterize the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein induced neurotoxicity. Cureus. 2022 Dec 9;14(12):e32361. https://doi.org/10.7759/cureus.32361.
[51] Barreda D, Santiago C, Rodríguez JR, Rodríguez JF, Casasnovas JM, Mérida I, et al. SARS-CoV-2 spike protein and its receptor binding domain promote a proinflammatory activation profile on human dendritic cells. Cells. 2021 Nov 23;10(12):3279. https://doi.org/10.3390/cells10123279.
[52] Chaudhary JK, Yadav R, Chaudhary PK, Maurya A, Roshan R, Azam F, et al. Host cell and SARS-CoV-2-associated molecular structures and factors as potential therapeutic targets. Cells. 2021 Sep 15;10(9):2427. https://doi.org/10.3390/cells10092427.
[53] Erdoğdu B, Kaplan O, Fidan BB, Çelebier M, Malkan ÜY, Haznedaroglu IC. Metabolomic profiling of leukemic hematopoiesis: effects of BNT162b2 mRNA COVID-19 vaccine administration. Curr Mol Med. 2025 Jun 3. http://dx.doi.org/10.2174/0115665240361878250601074746.
[54] Omo-Lamai S, Wang Y, Patel MN, Essien EO, Shen M, Majumdar A, et al. Lipid nanoparticle-associated inflammation is triggered by sensing of endosomal damage: Engineering endosomal escape without side effects. BioRxiv (preprint). 2024 Apr 18. https://doi.org/10.1101/2024.04.16.589801.
[55] Ko M, Quiñones-Hinojosa A, Rao R. Emerging links between endosomal pH and cancer. Cancer Metastasis Rev. 2020 Jun;39(2):519-534. https://doi.org/10.1007/s10555-020-09870-1.
[56] Eens S, Van Hecke M, Favere K, Tousseyn T, Guns PJ, Roskams T, Heidbuchel H. B-cell lymphoblastic lymphoma following intravenous BNT162b2 mRNA booster in a BALB/c mouse: A case report. Front Oncol. 2023;13:1158124. https://doi.org/10.3389/fonc.2023.1158124. Voir notre article : https://lepointcritique.fr/2023/07/19/une-souris-decede-dun-turbo-cancer-deux-jours-apres-avoir-recu-une-deuxieme-dose-de-vaccin-pfizer/.
[57] Larsson J, Hellstrand E, Hammarström P, Nyström S. SARS-CoV-2 Spike amyloid fibrils specifically and selectively accelerates amyloid fibril formation of human prion protein and the amyloid β peptide. 2023 Sept 1. bioRxiv. https://doi.org/10.1101/2023.09.01.555834.
[58] Francescangeli F, De Angelis ML, Baiocchi M, Rossi R, Biffoni M, Zeuner A. COVID-19–induced modifications in the tumor microenvironment: Do they affect cancer reawakening and metastatic relapse ? Front. Onco l. 2020 Oct 26. https://doi.org/10.3389/fonc.2020.592891.
[59] Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E, Cichutek K, et al. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. iScience. 2021 Feb 9;24(3):102170. https://doi.org/10.1016/j.isci.2021.102170.
[60] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020 Mar 27;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.
[61] Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, et al. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol. 2021 Feb 10;95(5): e02304-20https://doi.org/10.1128/JVI.02304-20.
[62] Lazebnik Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget. 2021 Dec 7;12 (25):2476-2488. https://doi.org/10.18632/oncotarget.28088.
[63] Tang M, Hu X, Wang Y. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res. 2021 Jan;163:105207. https://doi.org/10.1016/j.phrs.2020.105207.
[64] Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature. 2021; 594:88–93. https://doi.org/10.1038/s41586-021-03491-6.
[65] Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005 Aug;23(2):165-75. https://doi.org/10.1016/j.immuni.2005.06.008.
[66] Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release. 2015 Nov 10;217:337-44. https://doi.org/10.1016/j.jconrel.2015.08.051.
[67] Kauffman KJ, Mir FF, Jhunjhunwala S, et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials. 2016 Dec;109:78-87. https://doi.org/10.1016/j.biomaterials.2016.09.006.
[68] Kayesh MEH, Kohara M, Tsukiyama-Kohara K. An overview of recent insights into the response of TLR to SARS-CoV-2 infection and the potential of tlr agonists as SARS-CoV-2 vaccine adjuvants. Viruses. 2021 Nov 18;13(11):2302. https://doi.org/10.3390/v13112302.
[69] Mulroney TE, Pöyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024 Jan;625(7993):189-94. https://doi.org/10.1038/s41586-023-06800-3
[70] Boros LG, Kyriakopoulos AM, Brogna C, Piscopo M, McCullough PA, Seneff S. Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacol Res Perspect. 2024 Jun;12(3):e1218. https://doi.org/10.1002/prp2.1218.
[71] Benitez Fuentes JD, Mohamed Mohamed K, de Luna Aguilar A, Jiménez García C, Guevara-Hoyer K, Fernandez-Arquero M, et al. Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Front Oncol. 2022 Dec 20;12:975980. https://doi.org/10.3389/fonc.2022.975980.
[72] Lacout A, Lesgards JF, Lounnas V, Azalbert X, Perronne C, Zizi M. Dealing with COVID-19 vaccine related antibody-dependent enhancement: A mini review. Arch Microbiol Immunol. 2024 Jun;8(2): 233-8. https://www.doi.org/10.26502/ami.936500170.
[73] Igyártó BZ, Qin Z. The mRNA-LNP vaccines – the good, the bad and the ugly? Front Immunol. 2024 Feb 8;15:1336906. https://www.doi.org/10.3389/fimmu.2024.1336906.
[74] Uversky VN, Redwan EM, Makis W, et al. IgG4 Antibodies induced by repeated vaccination may generate immune tolerance to the SARS-CoV-2 Spike protein. Vaccines. 2023 May 17;11(5):991. https://doi.org/10.3390/vaccines11050991.
[75] Irrgang P, Gerling J, Kocher K, et al. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol. 2023 Jan 27;8(79):eade2798. https://doi.org/10.1126/sciimmunol.ade2798.
[76] Selva KJ, Ramanathan P, Haycroft ER, Reynaldi A, Cromer D, Tan CW,Preexisting immunity restricts mucosal antibody recognition of SARS-CoV-2 and Fc profiles during breakthrough infections. JCI Insight. 2023 Sep 22;8(18):e172470. https://doi.org/10.1172/jci.insight.172470.
[77] Shrestha NK, Burke PC, Nowacki AS, Simon JF, Hagen A, Gordon SM. Effectiveness of the coronavirus disease 2019 bivalent vaccine. Open Forum Infect Dis. 2023 Apr 19;10(6):ofad209. https://doi.org/10.1001/10.1093/ofid/ofad209.
[78] Yamamoto K. Adverse effects of COVID-19 vaccines and measures to prevent them. Virol J. 2022 Jun 5;19(1):100. https://doi.org/10.1186/s12985-022-01831-0.
[79] Raszek M, Cowley D , Redwan EM, Uversky VN, Rubio-Casillas A. Exploring the possible link between the spike protein immunoglobulin G4 antibodies and cancer progression. Explor Immunol. 2024;4:267-84. https://doi.org/10.37349/ei.2024.00140.
[80] Cavanna L, Grassi SO, Ruffini L, Michieletti E, Carella E, Palli D, et al. Non-Hodgkin lymphoma developed shortly after mRNA COVID-19 vaccination: report of a case and review of the literature. Medicina (Kaunas). 2023 Jan 12;59(1):157. https://doi.org/10.3390/medicina59010157.
[81] Goldman S, Bron D, Tousseyn T, Vierasu I, Dewispelaere L, Heimann P, et al. Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: a case report. Front Med (Lausanne). 2021 Nov 25;8:798095. https://doi.org/10.3389/fmed.2021.798095.
[82] Sekizawa A, Hashimoto K, Kobayashi S, Kozono S, Kobayashi T, Kawamura Y, et al. Rapid progression of marginal zone B-cell lymphoma after COVID-19 vaccination (BNT162b2): a case report. Front Med (Lausanne). 2022 Aug 1;9:963393. https://doi.org/10.3389/fmed.2022.963393.
[83] Gelderloos AT, Verheul MK, Middelhof I, de Zeeuw-Brouwer ML, van Binnendijk RS, Buisman AM, et al. Repeated COVID-19 mRNA vaccination results in IgG4 class switching and decreased NK cell activation by S1-specific antibodies in older adults. Immun Ageing. 2024 Sep 14;21(1):63. https://doi.org/10.1186/s12979-024-00466-9.
[84] Eythorsson E, Runolfsdottir HL, Ingvarsson RF, Sigurdsson MI, Palsson R. Rate of SARS-CoV-2 reinfection during an omicron wave in Iceland. JAMA Netw Open. 2022 Aug 1;5(8):e2225320. https://doi.org/10.1001/jamanetworkopen.2022.25320.
[85] Shrestha NK, Shrestha P, Burke PC, Nowacki AS, Terpeluk P, Gordon SM. Coronavirus disease 2019 vaccine boosting in previously infected or vaccinated individuals. Clin Infect Dis. 2022 Dec 19;75(12):2169-77. https://doi.org/10.1093/cid/ciac327.
[86] Chemaitelly H, Ayoub HH, Tang P, Coyle P, Yassine HM, Al Thani AA, et al. Long-term COVID-19 booster effectiveness by infection history and clinical vulnerability and immune imprinting: a retrospective population-based cohort study. Lancet Infect Dis. 2023 Jul;23(7):816-27. https://doi.org/10.1016/S1473-3099(23)00058-0.
[87] Nakatani E, Morioka H, Kikuchi T, Fukushima M. Behavioral and health outcomes of mRNA COVID-19 vaccination: A case-control study in Japanese small and medium-sized enterprises. Cureus. 2024 Dec 13;16(12):e75652. https://doi.org/10.7759/cureus.75652.
[88] Feldstein LR, Ruffin J, Wiegand R, Grant L, Babu TM, Briggs-Hagen M, et al. Protection From COVID-19 vaccination and prior SARS-CoV-2 infection among children aged 6 months-4 years, United States, September 2022-April 2023. J Pediatric Infect Dis Soc. 2025 Jan 20;14(1):piae121. https://doi.org/10.1093/jpids/piae121.
[89] Ioannou GN, Berry K, Rajeevan N, Li Y, Yan L, Huang Y, et al. Effectiveness of the 2023-to-2024 XBB.1.5 COVID-19 vaccines over long-term follow-up : A target trial emulation. Ann Intern Med. 2025 Mar;178(3):348-359. https://doi.org/10.7326/ANNALS-24-01015.
[90] Martín Pérez C, Ruiz-Rius S, Ramírez-Morros A, Vidal M, Opi DH, Santamaria P, et al. Post-vaccination IgG4 and IgG2 class switch associates with increased risk of SARS-CoV-2 infections. J Infect. 2025 Apr;90(4):106473. https://doi.org/10.1016/j.jinf.2025.106473.
[91] McKernan K. Pfizer and Moderna bivalent vaccines contain 20-35% expression vector and are transformation competent in E. coli. 2023. https://anandamide.substack.com/p/pfizer-and-moderna-bivalent-vaccines.
[92] McKernan K (Medicinal Genomics, US), Nitta T (Tokyo Univ, Japan), Buckhaults PJ (University of South Carolina, US), König B et Kirchner JO (MMD Indep Lab, Magdeburg, Germany), Speicher DJ (University of Guelph, Canada) et McKernan K (Medicinal Genomics, US), Speicher DJ (University of Guelph, Canada), Raoult D (IHU Marseille, France), Kämmerer U (Univ. Hospital of Würzburg, Germany), Wang TJ, Kim A et Kim K, (FDA scientists, Centreville High School, US, executed at FDA White Oak Campus). Résultats dans : https://docs.google.com/spreadsheets/d/1gJj3GSrM-UJR9c6Lrcn1k8_buQkQznuUVSKuMR8_2lU/edit?gid=0#gid=0.
[93] Speicher DJ. Full Detailed Report. 2024 Sept 9. https://russellbroadbent.com.au/wp-content/uploads/David-Speicher-Report-2.pdf.
[94] Kämmerer U, Schulz V, Steger K. BioNTech RNA-Based COVID-19 Injections Contain Large Amounts of Residual DNA including an SV40 Promoter/Enhancer Sequence. Public Health Policy Law. 2024 Mar 12. https://publichealthpolicyjournal.com/biontech-rna-based-covid-19-injections-contain-large-amounts-of-residual-dna-including-an-sv40-promoter-enhancer-sequence/.
[95] Wang TJ, Kim A, Kim K. A rapid detection method of replication-competent plasmid DNA from COVID-19 mRNA vaccines for quality control. J High School Sc. 2024;8(4):427-39. https://jhss.scholasticahq.com/article/127890-a-rapid-detection-method-of-replication-competent-plasmid-dna-from-covid-19-mrna-vaccines-for-quality-control.
[96] Peková S. Quantitative Multiplex Real-Time PCR analysis of Moderna (Spikevax) and Pfizer (BNT162b2) vaccines. 2025 Mar 8. https://www.10letters.org/CzechResearch.pdf.
[97] Dean DA, Dean BS, Muller S, Smith LC. Sequence requirements for plasmid nuclear import. Exp Cell Res. 1999 Dec 15;253(2):713-22. https://doi.org/10.1006/excr.1999.4716.
[98] Duncan CN, Bledsoe JR, Grzywacz B, Beckman A, Bonner M, Eichler FS, et al. Hematologic cancer after gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2024 Oct 10;391(14):1287-1301. https://doi.org/10.1056/nejmoa2405541. Voir notre article : https://lepointcritique.fr/2024/10/14/nouvelle-preuve-inedite-cancerogenicite-injections-anti-covid-pfizer/.
[99] Hickey TE, Mudunuri U, Hempel HA, Kemp TJ, Roche NV, Talsania K, et al. Proteomic and serologic assessments of responses to mRNA-1273 and BNT162b2 vaccines in human recipient sera. Front Immunol. 2025 Jan 27;15:1502458. https://doi.org/10.3389/fimmu.2024.1502458.
[100] OpenVaet, Syed KA, Guetzkow J, Cobalt J, Kunadhasan J, Jackson B. Pfizer/BioNTech C4591001 Trial – Audit Report – v1 (2024-05-31) Reanalysis of the data and anomalies inventoried. 2024 May 31. https://openvaet.substack.com/p/pfizerbiontech-c4591001-trial-audit?open=false#%C2%A7evidence-the-planned-comparison-of-processes-and-was-never-conducted.
[101] Fajloun Z, Sabatier JM. The unsuspected role of the renin-angiotensin system (RAS): Could its dysregulation be at the root of all non-genetic human diseases? Infect Disord Drug Targets. 2024;24(1):e140923221085. https://doi.org/10.2174/1871526524666230914114524.
[102] Hazan S, Dave S, Barrows B, Borody T. Messenger RNA SARS-CoV-2 vaccines affect the gut microbiome. Am J Gastroenterol. 2022 Oct;117(10S):e162. https://doi.org/10.14309/01.ajg.0000857548.07509.09.
[103] Beaudoin CA, Bartas M, Volná A, Pečinka P, Blundell TL. Are There Hidden Genes in DNA/RNA Vaccines? Front Immunol. 2022 Feb 8;13:801915. https://doi.org/10.3389/fimmu.2022.801915.
Les vaccins ARNm anti-COVID peuvent induire le cancer de 17 manières distinctes selon plus de 100 études Mathilde Debord | 19 juin 2025
===================================================
Jeffrey Dach MD
7450 Griffin Road, Suite 190
Davie, Fl 33314
954-792-4663
my blog: www.jeffreydachmd.com
Bioidentical Hormones 101 Second Edition
Menopausal Hormone Replacement, Health Benefits
Natural Thyroid Toolkit by Jeffrey Dach MD
Cracking Cancer Toolkit by Jeffrey Dach MD
Heart Book by Jeffrey Dach MD
www.naturalmedicine101.com
www.bioidenticalhormones101.com
www.truemedmd.com
www.drdach.com
Click Here for: Dr Dach’s Online Store for Pure Encapsulations Supplements
Click Here for: Dr Dach’s Online Store for Nature’s Sunshine Supplements
Web Site and Discussion Board Links:
jdach1.typepad.com/blog/
disc.yourwebapps.com/Indices/244066.html
disc.yourwebapps.com/Indices/244067.html
http://sci.med.narkive.com/covV2Qo2/jeffrey-dach-book-announcment-natural-medicine-101
The reader is advised to discuss the comments on these pages with his/her personal physicians and to only act upon the advice of his/her personal physician. Also note that concerning an answer which appears as an electronically posted question, I am NOT creating a physician — patient relationship. Although identities will remain confidential as much as possible, as I can not control the media, I can not take responsibility for any breaches of confidentiality that may occur.
Copyright © 2025 Jeffrey Dach MD All Rights Reserved. This article may be reproduced on the internet without permission, provided there is a link to this page and proper credit is given. See Repost Guidelines.
FAIR USE NOTICE: This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of issues of significance. We believe this constitutes a ‘fair use’ of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.
Serving Areas of: Hollywood, Aventura, Miami, Fort Lauderdale, Pembroke Pines, Miramar, Davie, Coral Springs, Cooper City, Sunshine Ranches, Hallandale, Surfside, Miami Beach, Sunny Isles, Normandy Isles, Coral Gables, Hialeah, Golden Beach ,Kendall,sunrise, coral springs, parkland,pompano, boca raton, palm beach, weston, dania beach, tamarac, oakland park, boynton beach, delray,lake worth,wellington,plantation
Discover more from Jeffrey Dach MD
Subscribe to get the latest posts sent to your email.
Leave a Reply
You must be logged in to post a comment.