1	Full vaccination is in	nperative to su	opress SARS-CoV-2	delta variant mutation
---	------------------------	-----------------	-------------------	------------------------

- 2 frequency
- 3

4 Ting-Yu Yeh and Gregory P. Contreras

5

8

10

- 6 Auxergen Inc., Columbus Center, Institute of Marine and Environmental Technology,
- 7 University of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
- 9 *Ting-Yu Yeh is Corresponding author
- 11 E-mail: <u>vehtv@auxergen.com</u>
- 12 Tel: 1-443-762-1974
- 13
- 14
- 15 Key words: COVID-19, SARS-CoV-2, mutation frequency, Tajima's *D* test
- 16 Short running title: Suppression of SARS-CoV-2 mutation by vaccination
- 17 Word count: 977 words.
- 18
- 19

20 Abstract

21

22	Public distrust has undermined COVID-19 vaccine acceptance and has become a
23	major public health issue in the battle against SARS-CoV-2 transmission globally.
24	Here we present the first evidence that the vaccination coverage rate is inversely
25	correlated to the mutation frequency of the SARS-CoV-2 delta variant in 16
26	countries (R^2 =0.878), strongly indicating that full vaccination against COVID-19 is
27	critical to suppress emergent mutations. We also present a promising tool to
28	forecast new COVID-19 outbreaks. The Tajima's D test, an evolutionary algorithm,
29	with a threshold value of -2.50 is shown to be an accurate predictor of new
30	outbreaks. We recommend that universal vaccination, as well as mitigation
31	strategies, and genomic surveillance continue to be employed to prevent further
32	viral transmission.

33

34 Introduction

35	Legally required vaccination against various infectious diseases is essential to public
36	health policy in many countries. However, resistance to voluntary COVID-19
37	vaccination has emerged worldwide, including in the United States. In mid-June
38	2021, 33% of Americans said they were not willing to be vaccinated [1]. Public
39	distrust has undermined COVID-19 vaccine acceptance, in association with a belief
40	that the vaccine is ineffective, dangerous and compromises individual freedom [2].
41	Therefore, overcoming COVID-19 vaccination resistance has become a major
42	challenge to prevent global SARS-CoV-2 transmission.
43	
44	SARS-CoV-2 is characterized by an average mutation rate of 7.23 mutations per viral
45	sample [3]. Mutations drive genome variability, generating many different SARS-
46	CoV-2 variants as the virus evolves to escape vaccine-mediated immunity and
47	thereby, develop drug or vaccine resistance [4]. The delta (lineage B1.617.2)
48	variants were first documented in October 2020 in India and were designated
49	variants of concern by the World Health Organization due to its increased
50	transmissibility and virulence [5]. All SARS-CoV-2 mutations result from two major
51	mechanisms: (1) spontaneous substitution/deletion of nucleotides, and (2) RNA
52	recombination [3,4,6]. However, it remains unclear exactly how human
53	interventions (vaccinations, lockdowns, etc.) affect viral mutations.
54	

55 Findings

56	To explore this question, we first analyzed the correlation between the rates of full
57	vaccination and the point mutation frequency (<i>Mf</i>) of COVID-19 delta variants'
58	genome in 20 countries. Complete SARS-CoV-2 genome sequences with high
59	coverage from June 20 to July 3 2021 in 20 countries: Australia ($N=121$), France
60	(<i>N</i> =788), Germany (<i>N</i> =955), Indonesia (<i>N</i> =97), India (<i>N</i> =171), Ireland (<i>N</i> =617),
61	Israel (N=333), Italy (N=642), Japan (N=105), Mexico (N=368), Netherland (N=456),
62	Norway (N=142), Portugal (N=782), Singapore (N=131), Spain (N=689),
63	Switzerland (N=131), Sweden (N=786), Turkey (N=428), United States (N=537), and
64	United Kingdom (UK, $N=3534$) were collected from the Global Initiative on Sharing
65	All Influenza Data (GISAID)[7]. <i>Mf</i> was calculated as described previously [3]. We
66	found that <i>Mf</i> was logarithmically reduced as the full vaccination rate increased in
67	16 of the 20 countries (R^2 =0.878, Figure 1A). To our knowledge, this is the first
68	evidence that vaccinations successfully suppressed viral mutations. With 10.8%
69	vaccinated rate, <i>Mf</i> was exceptionally low in Australia, likely as a result of the
70	national lockdown restrictions. In contrast, <i>Mf</i> is higher in Japan, Switzerland, and
71	United States, suggesting that their mitigation strategies have been less successful.
72	
73	Previously we reported that <i>de novo</i> recombination of viral genome and positive
74	selection pressure led to prevalent SARS-CoV-2 mutations among passengers in

quarantine on the Diamond Princess cruise ship between January and March 2020
[6]. It is still unknown whether COVID-19 variants are evolving randomly or under
the selection pressure generated by mitigation efforts. We chronologically analyzed

78 SARS-CoV-2 delta variant sequences in the UK (*N*=27,344), India (*N*=4,451) and

79	Australia (<i>N</i> =305) from 13 February to 3 July 2021, respectively in the GISAID [7].
80	Genome alignments and analysis using the Tajima D test, a neutrality statistic widely
81	used in population genetics, were carried out as previously [6,8,9,10]. The Tajima D
82	test (D') compares pairwise nucleotide diversity (π , the average number of
83	nucleotide differences per site between two sequences) and total polymorphism to
84	infer selection and demographic events [6, 9, 10].
85	
86	We observed that π was significantly lower in the UK ($\pi < 1.5 \times 10^{-4}$) than others
87	which emerged after April 24, 2021 (π > 2.0 × 10 ⁻⁴ ; p<0.01) (Figure 1B), suggesting
88	that the UK delta variants emerged with rapid clonal expansion, while others gained
89	more singleton mutations. D' value decreased drastically in both the UK and India
90	(Figure 1C). All variants eventually remained between -2.68 to -2.84 (p <0.01), which
91	was similar to the D' value calculated from the alpha variant sequences in UK (-2.58
92	to -2.78; $N=15,396$) during the period of study. Negative D' signifies stronger
93	demographic expansion or purifying (positive) selection, witnessed in both the UK
94	and Indian variants ¹⁰ . In Australia, D' decreased in June 2021, suggesting positive
95	selection exerted by lockdowns [6].
96	
97	Together with available epidemiological reports [5], we found that one to three

98 weeks after *D*' was reduced below -2.50, new COVID-19 outbreaks emerged in the

99 UK and India (Figure 1C). Although drivers of positive selection may vary

100 (vaccinations, lockdowns, etc.), we propose that a *D*' score with a threshold of -2.50

101 is a promising forecasting tool for COVID-19 outbreaks. It is worth noting that *D*' of

102 the Australian delta variants reached -2.57 on 3 July 2021, suggesting that a further 103 extension in restrictions was required to contain outbreaks due to low vaccination 104 rates nationwide. 105 106 **Conclusion and recommendation** 107 More virulent strains of SARS-CoV-2 have emerged with enhanced transmissibility 108 and immune evasion properties. For example, multiple variants have escaped 109 neutralizing antibodies developed to target the spike protein receptor-binding or N-110 terminal domain [11]. What's more, the case numbers of breakthrough infection 111 caused by the delta variant have increased drastically worldwide [12]. 112 113 Our observations showed that countries with higher vaccination rates generated 114 fewer mutations versus low vaccinated countries. This suggests that there is less of 115 a chance for the virus to gain more virulent mutations in high vaccinated countries. 116 It must be noted that the virus becomes more contagious as it is screened through 117 the vaccinated population, eventually to become the dominant strain to infect the 118 entire population. This is what we are seeing in the delta variant in the United 119 States, the UK and many countries [12]. A negative effect of COVID-19 vaccination 120 resistance could result in a large increase of virulent mutations and failure to reach 121 herd immunity nationwide or globally. 122 123 Thus, we recommend that: 1) universal vaccination should be administered as soon 124 as possible to suppress the generation of deadly mutations; 2) mitigations strategies

- such as personal protection equipment, social distancing, etc., should be re-
- 126 implemented with new urgency until full vaccination is reached in an effort to
- 127 prevent viral transmission until the virus is eradicated; 3) genomic surveillance
- should be undertaken to monitor for new mutations; and 4) The Tajima *D*' threshold
- 129 test further provides a tool by which we can forecast future outbreaks.
- 130
- 131
- 132

133	Discl	osure statement
134	No po	otential conflict of interest was reported by the author(s).
135		
136	Auth	or contributions
137	All au	thors contributed to study concept, rationale, and initial manuscript drafts,
138	inter	pretation of data, and final manuscript preparation. All authors have read and
139	appro	oved the final version of the manuscript.
140		
141	Fund	ing
142	No fu	nding
143		
144	Ethic	al approval
145	None	declared.
146		
147	Refe	rences
148		
149	1.	Kirzinger A, Sparks G, Brodie M, KFF COVID-19 vaccine monitor-Rural
150		America. https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-
151		<u>19-vaccine-monitor-in-their-own-words-six-months-later/</u> Accessed 13 July
152		2021.
153	2.	Schmelz K, Bowles S, Overcoming COVID-19 vaccination resistance when
154		alternative policies affect the dynamics of conformism, social norms, and
155		crowding out. Proc Natl Acad Sci U S A 2021;118(25):e2104912118. PMID:
156		34099578
157	3.	Mercatelli D, Giorgi FM, Geographic and Genomic Distribution of SARS-CoV-2
158		Mutations. Front Microbiol 2020;11:1800. PMID: 32793182

159	4.	Roy C, Mandal, SM, Mondal SK, Mukherjee S, Mapder T, et al., Trends of
160		mutation accumulation across global SARS-CoV-2 genomes: Implications for
161		the evolution of the novel coronavirus. Genomics 2020;112(6):5331-5342.
162		PMID: 33161087
163	5.	The World Health organization. Tracking SARS-CoV-2 variants.
164		https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
165	6.	Yeh, TY, Contreras, GP, Viral transmission and evolution dynamics of SARS-
166		CoV-2 in shipboard quarantine. Bull World Health Organ. 2021; 99(7): 486–
167		495. PMID: 34248221
168	7.	Global Initiative on Sharing All Influenza Data. Available from:
169		https://www.gisaid.org/
170	8.	Katoh, K, Standley, DM. MAFFT multiple sequence alignment software version
171		7: improvements in performance and usability. Mol Biol Evol.
172		2013;30(4):772-80. PMID: 23329690
173	9.	Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics
174		analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
175		PMID: 27004904
176	10	. Tajima F. Statistical method for testing the neutral mutation hypothesis by
177		DNA polymorphism. Genetics. 1989;123(3):585–595. PMID: 2513255
178	11	. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike
179		mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-424.
180		PMID: 34075212

- 181 12. Farinholt T, Doddapaneni H, Qin X, Menon V, Meng Q, et al. Transmission
- 182 event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough
- 183 infections. medRxiv 2021 Jul 12;2021.06.28.21258780. doi:
- 184 10.1101/2021.06.28.21258780. PMID: 34268529
- 185 13. Coronavirus (COVID-19) Vaccinations. Our World in Data. 2021 July.
- 186 https://ourworldindata.org/covid-vaccinations
- 187
- 188
- 189

190 Figure Legend

- 191 Figure 1. (A) Correlation between full vaccinated rate [13] and mutation frequency
- 192 (*Mf*) from June 20 to July 3 2021 in 20 countries: Australia (AUS), France (FRA),
- 193 Germany (GER), Indonesia (IDA), India (IND), Ireland (IRL), Israel (ISR), Italy (ITA),
- 194 Japan (JPN), Mexico (MEX), Netherland (NED), Norway (NOR), Portugal (POR),
- 195 Singapore (SGP), Spain (ESP), Switzerland (SUI), Sweden (SWE), Turkey (TUR),
- 196 United States (USA), and UK. Logarithmic regression (solid) line was draw based on
- 197 16 countries (pink dots) with a calculated 95% confidence interval (dashed lines).
- 198 Japan, Switzerland, USA, and Australia are labeled in different colors as outliers. (B
- and C) Chronology of nucleotide diversity (π) (B) and Tajima D' value (C) of SARS-
- 200 CoV-2 delta variants in UK (*N*=27,344, blue), Indian (*N*=4,451, red), and Australian
- 201 (*N*=305, green). Data were plotted every two weeks, and the data only represent
- the effective population size with more than 3 high quality sequences. The arrows
- 203 label the epidemiological events of COVID-19 delta variants announced by the
- 204 World Health Organization (WHO). WHO classified the delta variant as a global
- variant of interest (VOI) on 4 April 2021, and variants of concern (VOC) on 11 May
- 206 2021 [5]. The dashed line in (C) labels the cut-off threshold -2.50 in Tajima D' test.

207