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74-year-old black male, diagnosed with renal cancer; subsequently had a right nephrectomy
15 years later developed metastatic lesions in his lungs and undergoes chemotherapy
His medications include Valsartan, Amlodipine, Doxazosin, Lasix, Atorvastatin

PE: Corrective lenses, 2/6 systolic ejection murmur, abdomen enlarged, no ascites palpated

Blood tests revealed the following pertinent findings:

Urinary Vitamin C level: extremely low
Urine protein 4+
Malondialdehyde 6 on o scale 0-7 (0=best, 7= worst)
Homocysteine 42 umol/L
NT-proBNP 1479 (<300 pg/mL is normal)
GGT 102 (3-70 U/L is normal)
EBV Early-D Antigen >150 (<9 U/mL is normal)
Iodine 49 mcg/L (50-109 mcg/L is normal)
WBC 2.4 Thousand/uL
Hgb 10 g/dL
Hct 31.6 %
Pregnenolone 12ng/dL 
DHEA-S 73 mcg/dL
Testosterone total 198 ng/dL
Testosterone free 26.1 pg/mL (6-73 pg/mL is normal)
CEA 4.2 ng/mL (<2.5 ng/mL is normal)
CRP HS 34 mg/L
Fibrinogen activity 411 mg/dL
Cholesterol total 91 mg/dL
BUN 60 mg/dL
Creatinine 7.02 mg/dL
Calcium 8.4 mg/dL
Albumin 3.4 gm/dL
Hgb A1C 4.8 
Uric acid 9.9 mg/dL
Vitamin D-25 OH 35 ng/mL
LDH 1 and LDH 2 are low
LDH 4 is high


Develop a comprehensive repurposed drugs and natural substances program for this patient.
Email your completed protocol to drmitch@mitchghen.com by September 14th 2021.

===========================================================================


Clear Cell Renal Carcinoma (RCC)  is highly Glycolytic, has minimal mitochondrial capacity and is highly sensitive to Glycolysis inhibitors such as DCA, Fenbenzadole, Quercetin etc. (1-10)

Role of PET Scan in RCC

Because of the highly Glycolytic nature of RCC, PET scanning is very a useful imaging modality to monitor disease progression. (43-45) (79)

HIF inhibitors

HIF (Hypoxia Inducing Factor) activation is another key pathway activated in RCC , inhibited by Allicin (81) and Thymoquinone (Black Seed Oil) which has been extensively studied in RCC and is a HIF inhibitor and is effective for RCC. (34-36)  Thymoquinone is also renoprotective (37-39)  

RCC is Highly GLYCOLYTIC and responds to GLYCOLYSIS inhibitors 

Targeting GLUT1 and MCT4 are valid anti-cancer strategies. (56-66)
Quercetin is a known MCT inhibitor, and alters AKT/mTOR/ERK signalling pathway. (69)(97)
3BP (research only) is another Glycolysis inhibitor effective for RCC (82)

Silybin Blocks GLUT Transporters

Silybin (Milk Thistle) blocks the activity of the GLUT transporter proteins , reduces glucose uptake and inhibits Glycolysis. (16) Silybin also blocks EGFR-ERK activation, inhibits EMT, g, downregulates mTOR and BCL2, and induces “protective autophagy” in RCC (17-
22)


RCC has Upregulated EGF Epidermal Growth Factor

Solomon’s Seal PCL is a potent EGF inhibitor and would be useful in RCC. (77-78)(78a) 

“The plant lectin, Solomon’s seal (PCL), has remarkable anti-cancer activities as a potent EGFR inhibitor. In addition, PCL is taken up and accumulates in mitochondria, depletes glutathione, and generates massive reactive oxygen species (ROS), which then induces both protective autophagy and mitochondrial apoptosis. Solomon ’s seal is widely available as a plant extract nutritional supplement.” (Quote from Cracking Cancer Toolkit, Chapter on Solomon’s Seal)

Fenbendazole for RCC - Veterinary Use Only

A veterinary antiparasitic, Fenbendazole, although not approved for human use,  is an excellent glycolysis inhibitor has been used by humans and three case reports show dramatic regression in renal cell carcinoma. (15)

Cordyceps Anti-inflammatory and Reno Protective

Cordyceps inhibits the NF-kB pathway and is effective in RCC in numerous studies.(23-30)
Cordyceps is also reno-protective which is important in post-nephrectomy RCC patients who have only one kidney with elevated BUN and Creatinine.  Cordyceps also inhibits platelet aggregation. (31-33)

Melatonin

Melatonin reverses the Warburg effect and has no adverse side effects and has been studied and is effective in RCC. (11-13)

Mifepristone for RCC

Case report by Dr Jerome Check of a patient with bilateral renal cell CA treated with heminephrectomy.  Patient survived 12 years on Mifepristone with no adverse side effects. (101)

Vitamin D3 - Hedgehog Pathway Re-Activated in RCC

Vitamin D3 and Resveratrol (Pterostilbene)  targets HH pathway in RCC (110)(112) Pterostilbene is effective for RCC and is reno-protective. (41-42)   Itraconazole is another well known Hedgehog pathway inhibitor. (111)

EGCG Green Tea is effective for RCC  (103-107)

Oxaloacetate/ RCC has a Glutamine Addiction

The “Achilles Heel” of metabolism in RCC is Glutamine Addiction. (46-51)  This suggests utility of treatment with oxaloacetate for RCC.  In addition, oxaloacetate enhances OXPHOS and Inhibits GLYCOLYSIS (Warburg effect).  Since RCC has a high level of GLYCOLYSIS, treatment with Oxaloacetate should be effective. (52)

RCC is Stimulated by Erythropoietin 

Therefore, use of Procrit (recombinant erythropoietin), or testosterone, which increases erythropoietin is contraindicated in RCC.(54-55)

Avoid Agents that Impair Renal Function

Many RCC patients have had nephrectomies with rising BUN and creatinine. Fenofibrate can increase serum creatinine in renal insufficiency.  Avoid it. (70-73) Similarly Diclofenac and other NSAIDS may impair renal function.


CIMETIDINE for RCC

Cimetidine 800 mg was effective for two patients with metastatic RCC  (83-84)


Atovaquone OXPHOS Inhibitor may sensitize RCC to chemotherapy (85-89)

Sulforaphane may be useful in RCC (90-93) In addition, sulphoraphane is renoprotective(94-96)

Artesunate may be a useful treatment strategy. (98)

Niclosamide exhibits potent anti cancer activity and synergizes with sorafenib in RCC. (99-100)

Hydroxychloroquine -Autophagy Inhibitor as add-on in RCC  (114-116)

Curcumin inhibits NFkB anti-inflammatory properties. (80)
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Glycolysis Inhibitor 3BP

4) Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate H Nilsson,1

Decreased Mitochondria DNA

5) Meierhofer, David, et al. “Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma.” Carcinogenesis 25.6 (2004): 1005-1010.

Decreased OXPHOS
6) Simonnet, Hélène, et al. “Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma.” Carcinogenesis 23.5 (2002): 759-768.
All results are in agreement with the hypothesis that a decreased OXPHOS capacity favors faster growth or increased invasiveness.

DCA Key article !!!!

7) Kinnaird, Adam. “Metabolic Reprogramming and Epigenetic Regulation in Renal Cell Carcinoma.” (2018). pdf

We show that reversing the suppression of mitochondrial glucose oxidation in ccRCC using dichloroacetate, an inhibitor of the HIF target gene mitochondrial pyruvate dehydrogenase kinase (PDK), which inhibits a major producer of acetyl-CoA, the Pyruvate Dehydrogenase Complex (PDC), results in increased production of mitochondrial acetyl-CoA via PDC, reduced proliferation and angiogenesis, and induces apoptosis in animal models.

Although the initial half-life of DCA is very short (i.e. approximately 2
hours) [96], the drug inhibits its own metabolism until it reaches a plateau, and thus therapeutic concentrations can be achieved in plasma with time (for example, at a dosing regime of 6.25mg/kg x 80 kg = 500 mg twice a day for three months) =  500 mg BID

DCA’s proven ability to increase the GO/glycolysis ratio in the treated
tumors and its ability to decrease HIF1α activity and thus reverse the up-
regulation of glucose transporters, suggest that metabolic imaging, like FDG-PET maybe used to track its effects in vivo, a very desirable tool in drug development.

DCA

8) Kalay, Saban, et al. “Dicholoroacetate exerts anti-cancer activity on human renal cell carcinoma cells.” Turkish Journal of Biochemistry 42.5 (2017): 577-585.

9) Khan, Akbar. “Case report of long term complete remission of metastatic renal squamous cell carcinoma after palliative radiotherapy and adjuvant dichloroacetate.” Advances in Cancer: Research Treatment 2012 (2012): 441895.

pt was started on DCA 500mg orally twice a day  (18mg/kg/day), on a cycle of 2 weeks on / 1 week off. Cyclic treatment was selected
due to the author’s prior experience with  an unacceptable level of side effects in  adult patients using continuous DCA dosing. She was prescribed benfotiamine (a lipid soluble form of vitamin B1) 80mg
orally twice a day and R-alpha lipoic acid 150mg orally 3 times a day to reduce the risk of DCA neuropathy, since both of these natural compounds have proven benefits in treating neuropathy of other etiologies (Ziegler et al. 1999), (Winkler et al. 1999). She was also started on pantoprazole 40mg orally once a day to prevent stomach upset from DCA. After the first 3 week cycle, the DCA was increased to 500mg orally three times a day (27mg/kg/day).

adds acetyl L-carnitine to the DCA neuropathy prevention regimen

DCA for RCC

10) Kinnaird, Adam, et al. “297 Dichloroacetate is a novel therapy for renal cell carcinoma.” The Journal of Urology 187.4S (2012): e120-e121.

METHODS: Two human kidney cell lines were used:
(1) A proximal tubule (PT) epithelial cell line and
(2) a clear cell RCC line that is deficient of wild type VHL tumour suppressor protein (786-0).

Cells were treated with 0.5 and 5mM DCA. Mitochondrial m and mROS
were assessed using live cell imaging with TMRM and mitosox, respec-tively. Tumor proliferation and apoptosis were measured using the
markers ki67 and TUNEL, respectively. HIF-1 activity was determined
using a firefly luciferase assay and mRNA levels quantified using
qRT-PCR. PDH activity and -ketoglutarate were measured using
commerically available kits. Angiogenesis was assessed in-vitro by
matrigel assay.

RESULTS: RCC cells have more hyperpolarized m (TMRM,
p0.001) and less mROS (Mitosox, p0.001) than PT cells. Treatment
with DCA reversed these changes in the RCC line without significantly altering PT m or mROS. This is associated with an increase in PDH activity (p0.05) and increased levels of the Krebs cycle metabolite -KG (p0.01). RCC cells are characterized by significantly more HIF-1 activity than PT cells (p0.01).

Treatment with DCA reduces mRNA levels of the HIF responsive genes GLUT1, GLUT4, and VEGF (p0.01) as well as decreasing VEGF protein level. (p0.01) RCC cells treated with DCA demonstrate decreased markers of proliferation (p0.001) and increased rates of apoptosis (p0.001).

Supernatant, containing the angiogenic signals from RCC cells was placed on microvascular endothelial cells. The supernatant from RCC cells increased vascularity (tubular structures and total length), which was blocked by DCA treatment (p0.05).

CONCLUSIONS: DCA is a novel, inexpensive, oral chemother-
apeutic agent that reverses the mitochondrial remodeling of RCC. This decreases proliferation and angiogenesis while increasing apoptosis in a human RCC line. Additional human tumor samples will be used to
generalize these findings in RCC.

Melatonin pdf
11) Reiter, Russel J., Ramaswamy Sharma, and Sergio Rosales-Corral. “Anti-Warburg effect of melatonin: a proposed mechanism to explain its inhibition of multiple diseases.” International journal of molecular sciences 22.2 (2021): 764.
Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin’s function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin’s action in switching the metabolic phenotype of cells.
cancer cells, are, in fact, only of the cancer phenotype about half the time (during the day)
In healthy cells, mitochondria produce melatonin both during the day and at night, so it is always available to inhibit HIF-1α/PDK axis which allows for the upregulation of PDC and the conversion of pyruvate to acetyl-CoA, the necessary co-factor/co-substrate for melatonin synthesis (Figure 2). In contrast, in diseased cell mitochondria, melatonin synthesis does not occur because of some not yet identified metabolic change, e.g., drop in PO2, which upregulates HIF-1α, thereby shutting down mitochondrial acetyl-CoA production and melatonin formation.
Melatonin functions as a glycolytic since it also inhibits the Warburg effect.
12) Wen, Yu‐Ching, et al. “Melatonin‐triggered post‐transcriptional and post‐translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma.” Journal of pineal research 69.2 (2020): e12668.
Results from protease array showed that ADAMTS1 is modulated by melatonin through mechanisms independent of the MT1 receptor in mRCC cells, and overexpression of ADAMTS1 relieved the invasion/clonogenicity and growth/metastasis inhibition imposed by melatonin treatment in vitro and in an orthotopic xenograft model.

13) Maleki Dana, Parisa, et al. “Melatonin as a potential inhibitor of kidney cancer: A survey of the molecular processes.” Iubmb Life 72.11 (2020): 2355-2365.

The studies concerned with the applications of melatonin as an adjuvant in the immunotherapy of patients with kidney cancer are summarized. Also, we highlight the apoptotic and anti-angiogenic effects of melatonin on renal cancer cells which are mediated by dif-ferent molecules (e.g., HIF-1 and VEGF, ADAMTS1, and MMP-9) and signaling
pathways (e.g., P56, P52, and JNK). Furthermore, we take a look into available data on melatonin’s ability to reduce the toxicities caused by kidney carcinogens, including ochratoxin A, potassium bromate, and Fe-NTA.

Fenbendazole

14) Ryan S Chiang Fenbendazole Enhancing Anti-Tumor Effect: A Case Series , Case Report, Clin Oncol Case Rep Vol: 4 Issue: 2

In summary, we have three patients with different primary genitourinary tumors who demonstrated complete response after receiving FBZ therapy

Case Report

A 63-year-old Caucasian male presented with flank pain, rapid weight loss, and transient fever. Abdominal Computed Topography (CT) revealed a 3 cm left lower-pole solid renal mass. He underwent open partial nephrectomy with pathology showing pT1a highgrade clear cell Renal Cell Carcinoma (RCC). Several months later, he developed persistent left flank pain with finding of a 5.2 cm left kidney mass. Fine Needle Aspiration (FNA) biopsy redemonstrated clear cell RCC, and pazopanib 800 mg was initiated. Follow-up CT revealed a new 1.4 cm pancreatic head/body lesion, persistent left renal mass, and signs of sigmoid colitis. Given the concerns for disease progression and intolerable side effects, pazopanib was discontinued and cabozantinib was initiated. Interval Magnetic Resonance Imaging (MRI) showed stable size of recurrent left renal mass, mild decrease in 2.9 cm pancreatic head lesion, stable 1.2 cm distal pancreatic body lesion, and new 1.1 cm right posterior iliac bone lesion. Cabozantinib was ultimately discontinued due to persistent intolerable side effects. One month after discontinuation, repeat MRI showed increase in size of recurrent left renal mass, mild decrease in 2.3 cm pancreatic head lesion, stable 1.4 cm distal pancreatic body lesion, and unchanged 1.1 cm right posterior iliac bone lesion. Third-line treatment with nivolumab was initiated, and he only received three total treatments (240 mg × 3) over the course of a month due to developing severe rash and colitis. He was treated with steroids with resolution of colitis.

During this time, he also started alternative therapy with FBZ 1 gm three times per week at the suggestion of one of his friends with head/neck cancer. Interval MRI imaging found near complete resolution of the previously noted left renal mass as well as decrease in pancreatic head/body and right posterior iliac spine lesions (Figure 1). Serial imaging for the past 10 months have not shown any evidence of recurrence or metastatic disease. He has continued taking FBZ without any reported side effects.

FenBen Apoptosis in Trophoblast Cells

15) Park, Hahyun, et al. “Fenbendazole induces apoptosis of porcine uterine luminal epithelial and trophoblast cells during early pregnancy.” Science of The Total Environment 681 (2019): 28-38.

Silybin Inhibits GLUT proteins

16) Zhan, Tianzuo, et al. “Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins.” Journal of cellular biochemistry 112.3 (2011): 849-859.

Silybin blocks the activity of GLUT transporter proteins

SIL against Renal Carcinoma

17) Liang L, Li L, Zeng J et al. Inhibitory effect of silibinin on EGFR signal–induced renal cell carcinoma progression via suppression of the EGFR/MMP–9 signalling pathway. Oncology Reports 2012;28:999–1005

18) Li L, Gao Y, Zhang L, Zeng J, He D, Sun Y. Silibinin inhibits cell growth and induces apoptosis by caspase activation, down regulating surviving and blocking EGFR–ERK activation in renal cell carcinoma. Cancer Lett 2008;272(1):61–69.

19) Fan, Yizeng, et al. “Silibinin inhibits epithelial‑mesenchymal transition of renal cell carcinoma through autophagy‑dependent Wnt/β‑catenin signaling.” International journal of molecular medicine 45.5 (2020): 1341-1350.

20) Ma, Zhenkun, et al. “Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma.” Oncology reports 34.5 (2015): 2461-2468.

21) Li, Feng, et al. “Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma.” International journal of molecular sciences 16.4 (2015): 8415-8429.

22) Chang, Horng‐Rong, et al. “Silibinin inhibits the invasion and migration of renal carcinoma 786‐O cells in vitro, inhibits the growth of xenografts in vivo and enhances chemosensitivity to 5‐fluorouracil and paclitaxel.” Molecular carcinogenesis 50.10 (2011): 811-823.

Cordycepin renal cell carcinoma

23) Jang, Ik-Soon, Hyun-Jin Jang, and Eunbi Jo. “Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of cFLIPL expression.” (2018): 4381-4381.

Specifically, cordycepin inhibited TNF-α-mediated NF-κB activation, which induced renal cancer cell apoptosis.

24) Park, Soo Jung, et al. “Cordyceps militaris extract inhibits the NF-κB pathway and induces apoptosis through MKK7-JNK signaling activation in TK-10 human renal cell carcinoma.” Natural Product Communications 13.4 (2018): 1934578X1801300422.

we found that CME dose-dependently inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in TK-10 human renal cell carcinoma.
CME prevented NF-κB from translocating to the nucleus, which resulted in the downregulation of GADD45B, upregulation of MKK7, and phosphorylation of JNK (p-JNK). The increased activation of Bax led to pronounced CME-induced apoptosis, which occurred through caspase-3.
Furthermore, the siRNA- mediated knockdown of GADD45B inhibited MKK7 expression, whereas the siRNA-mediated inhibition of MKK7 downregulated p-JNK and the JNK inhibitor, SP600125, inhibited Bax expression. Thus, these results indicated that CME inhibited the activation of GADD45B via the inhibition of NF-κB activation, which upregulated the MKK7-JNK signaling pathway to induce apoptosis in TK-10 cells.

25) Hwang, In-Hu, et al. “Cordycepin promotes apoptosis in renal carcinoma cells by activating the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression.” PLoS One 12.10 (2017): e0186489.

Taken together, the results indicate that cordycepin inhibits TNF-α-mediated NF-κB/GADD45B signaling, which activates the MKK7-JNK signaling pathway through inhibition of c-FLIPL expression, thus inducing TK-10 cell apoptosis.

26) Yang, Chao, et al. “Cordycepin induces apoptotic cell death and inhibits cell migration in renal cell carcinoma via regulation of microRNA-21 and PTEN phosphatase.” Biomedical Research 38.5 (2017): 313-320.

27) Hwang, Jung-Hoo, et al. “Cordycepin promotes apoptosis by modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer cells.” American journal of cancer research 6.8 (2016): 1758.

28) Özenver, Nadire, Joelle C. Boulos, and Thomas Efferth. “Activity of Cordycepin From Cordyceps sinensis Against Drug-Resistant Tumor Cells as Determined by Gene Expression and Drug Sensitivity Profiling.” Natural Product Communications 16.2 (2021): 1934578X21993350.

The drug sensitivity profiles of several DNA Topo I and II inhibitors were significantly correlated with those of cordycepin’s activity. Among eight different tumor types, prostate cancer was the most sensitive, whereas renal carcinoma was the most resistant to cordycepin.

Cordycepin exerted an anticancer function through stimulating the adenosine A3 receptor followed by GSK-3β activation and cyclin D1 repression.

Furthermore, cordycepin displayed an antimetastatic property through inhibiting platelet aggregation initiated by ADP liberated from cancer cells and easing invasiveness of cancer cells via suppressing matrix metalloproteinase (MMP-2, MMP-9) activities, as well as enhancing tissue inhibitor of matrix metalloproteinase (TIMP-1, TIMP-2) secretions from those cells.

Cordycepin exerts anti-inflammatory activity

29) Yoon, So Young, Soo Jung Park, and Yoon Jung Park. “The anticancer properties of cordycepin and their underlying mechanisms.” International journal of molecular sciences 19.10 (2018): 3027.

30) Jin, Ye, et al. “Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris.” Saudi journal of biological sciences 25.5 (2018): 991-995.

Cordyceps Renal Protection

31) Wang, Ying, et al. “Protection of chronic renal failure by a polysaccharide from Cordyceps sinensis.” Fitoterapia 81.5 (2010): 397-402.

32) Chiu, Chun-Hung, et al. “Polysaccharide extract of Cordyceps sobolifera attenuates renal injury in endotoxemic rats.” Food and Chemical Toxicology 69 (2014): 281-288.

33)  Chyau, Charny-Cherng, et al. “Mycelia glycoproteins from Cordyceps sobolifera ameliorate cyclosporine-induced renal tubule dysfunction in rats.” Journal of ethnopharmacology 153.3 (2014): 650-658.

Thymoquinone for RCC

34) Chae, In Gyeong, et al. “Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect.” Food and Chemical Toxicology 139 (2020): 111253.

However, treatment with the ROS scavenger N-acetyl cysteine significantly blocked TQ-induced apoptosis as well as incorporated signaling pathways, supporting that its pro-oxidant property is crucial for Caki-1 cell apoptosis. Moreover, TQ reduced the tumor xenograft growth of Caki-1 cells in nude mice. Taken together, these data suggest that TQ is a prominent anti-cancer drug to treat human RCC by enhancing apoptosis through its pro-oxidant nature.

35) Lee, Yoon-Mi, et al. “Thymoquinone selectively kills hypoxic renal cancer cells by suppressing HIF-1α-mediated glycolysis.” International journal of molecular sciences 20.5 (2019): 1092.

The major findings of this study are that

1) thymoquinone (TQ) was identified as an HIF-1α inhibitor using a 502 natural compound library,

2) TQ suppressed hypoxia-induced HIF-1α by suppressing HSP90-mediated stabilization and target genes’ expression,

3) TQ alters hypoxic anaerobic glycolysis and causes metabolic stress, and

4) TQ selectively killed hypoxic renal cancer cells. Overall, our finding suggested that TQ, as an HIF-1α inhibitor, is a potential natural compound involved in clearance of hypoxic renal cancer cells.

Dr. Lee’s group then studied the anti-cancer effects of TQ on a renal cell cancer line, writing that TQ rapidly degrades HIF-1 protein and
kills hypoxic renal cancer cells:
TQ causes rapid degradation of HIF-1α by inhibiting interaction between HIF-1α and HSP90 … TQ suppressed HIF-1α protein levels,
which significantly downregulated the hypoxia-induced tumor-promoting HIF-1α target genes … TQ Suppresses Glycolysis [the Warburg Effect] in Hypoxic Renal Cancer Cells, … TQ-mediated suppression of angiogenesis via HIF-mediated VEGF expression. (22)

Accumulation of Autophagosomes Thymoquinone TQ

Similar upregulation of autophagy with accumulation of autophagosomes was seen in 2018 by Dr. Yujiao Zhang et al. in a renal cell
cancer model treated with TQ. In this model, inhibition of autophagy with 3‐methyladenine (3‐MA) attenuated the anti-cancer effects of
TQ.

Treatment with TQ caused AMPK activation and downregulated mTOR, which stimulated autophagy. TQ significantly inhibited renal cell
cancer growth and metastasis in an in vivo mouse xenograft model, via inhibition of EMT (epithelial to mesenchymal transition). In this
model, TQ stimulated early stage autophagy. However, late-stage autophagy was blocked, as indicated by accumulation of autophagosomes with good inhibition of metastasis. (24)

36) Zhang, Yujiao, et al. “Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway.” Cancer science 109.12 (2018): 3865-3873

Thymoquinone Renal Protective

37) Al Fayi, Majed, et al. “Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling.” Journal of drug targeting 28.9 (2020): 913-922.

38) Abdel-Daim, Mohamed M., et al. “Thymoquinone and diallyl sulfide protect against fipronil-induced oxidative injury in rats.” Environmental Science and Pollution Research 25.24 (2018): 23909-23916.

39) Ragheb, Ahmed, et al. “The protective effect of thymoquinone, an anti-oxidant and anti-inflammatory agent, against renal injury: a review.” Saudi Journal of Kidney Diseases and Transplantation 20.5 (2009): 741.

Pterostilbene for RCC

40) Zhao, Yuwan, et al. “Pterostilbene inhibits human renal cell carcinoma cells growth and induces DNA damage.” Biological and Pharmaceutical Bulletin 43.2 (2020): 258-265.

Pterostilbene Renoprotective

41) Gao, Dan, et al. “Pterostilbene protects against acute renal ischemia reperfusion injury and inhibits oxidative stress, inducible nitric oxide synthase expression and inflammation in rats via the Toll‑like receptor 4/nuclear factor‑κB signaling pathway.” Experimental and therapeutic medicine 15.1 (2018): 1029-1035.

42) Xia, Yizi, et al. “Pterostilbene attenuates acute kidney injury in septic mice.” Experimental and therapeutic medicine 15.4 (2018): 3551-3555.

PET SCAN for  RCC

43) Ferda, Jiri, et al. “18F-FDG-PET/CT in potentially advanced renal cell carcinoma: a role in treatment decisions and prognosis estimation.” Anticancer research 33.6 (2013): 2665-2672.

44) Courtney, Kevin D., et al. “Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo.” Cell metabolism 28.5 (2018): 793-800.

45) Keshari, Kayvan R., et al. “Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas.” Cancer research 73.2 (2013): 529-538.

GLUTAMINE Addiction RCC

46) Hoerner, Christian R., Viola J. Chen, and Alice C. Fan. “The ‘Achilles Heel’of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy.” Kidney Cancer 3.1 (2019): 15-29.

47) Novel inhibitors of glutaminase, a key enzyme in glutamine metabolism, target glutamine addiction as a viable treatment strategy in metastatic RCC (mRCC).

48) Aboud, Omran Abu, et al. “Glutamine addiction in kidney cancer suppresses oxidative stress and can be exploited for real-time imaging.” Cancer research 77.23 (2017): 6746-6758.

49) Sanchez, Danielle J., and M. Celeste Simon. “Genetic and metabolic hallmarks of clear cell renal cell carcinoma.” Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1870.1 (2018): 23-31.

Since being reviewed by Wettersten, et al. [3], two phase II clinical trials have been initiated to examine the effect of CB-839, a small molecule inhibitor of glutaminase, along with either cabozantinib, everolimus, or placebo, on patients with advanced or metastatic RCC [105]. Additionally, a pre-clinical report on the role of glutamine addiction in ccRCC further supports the possibility of therapeutically targeting this axis in kidney cancer [106]. Aboud, et al. demonstrate that ccRCC tumors grown orthotopically show increased uptake of 18F-(2S,4R)4-fluoroglutamine relative to adjacent healthy kidney tissue and are sensitive to glutaminase inhibition by CB-839. These results suggest that PET imaging could be useful to identify ccRCC patients likely to respond to glutaminase inhibition clinically.

50) Hoerner, Christian R., Viola J. Chen, and Alice C. Fan. “The ‘Achilles Heel’of metabolism in renal cell carcinoma: glutaminase inhibition as a rational treatment strategy.” Kidney Cancer 3.1 (2019): 15-29.

Novel inhibitors of glutaminase, a key enzyme in glutamine metabolism, target glutamine addiction as a viable treatment strategy in metastatic RCC (mRCC).

51) Altman, Brian J., Zachary E. Stine, and Chi V. Dang. “From Krebs to clinic: glutamine metabolism to cancer therapy.” Nature Reviews Cancer 16.10 (2016): 619-634.

OxaloAcetate

52) Kuang, Ye, et al. “Oxaloacetate induces apoptosis in HepG2 cells via inhibition of glycolysis.” Cancer medicine 7.4 (2018): 1416-1429.
we confirmed the anticancer effect of  OA in vivo and in vitro. We found that the OA- mediated  apoptosis in cancer cells was related to the inhibition of  aerobic glycolysis. We further found that OA inhibited
glycolysis via enhancement of OXPHOS and suppression  of the Akt/HIF pathway. In addition, our preliminary  study revealed that OA selectively inhibited cancer cells  with high levels of glycolysis.

Platelets

53) Wang, Jun, et al. “The platelet isoform of phosphofructokinase contributes to metabolic reprogramming and maintains cell proliferation in clear cell renal cell carcinoma.” Oncotarget 7.19 (2016): 27142.

Erythropoetin Stimulates Proliferation

54) Erythropoietin stimulates proliferation of human renal carcinoma cells Christof Westenfelder Robert L.Baranowski

55) Bachman, Eric, et al. “Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point.” Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 69.6 (2014): 725-735.

RCC is Highly Glycolytic
56) Zhang, Yan, et al. “Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carcinoma.” Oxidative Medicine and Cellular Longevity 2021 (2021).
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Even though many tumor types display a high degree of aerobic glycolysis, they still retain the activity of other energy-producing metabolic pathways. One exception seems to be the clear cell variant of renal cell carcinoma, ccRCC, where the activity of most other pathways than that of glycolysis has been shown to be reduced. This makes ccRCC a promising candidate for the use of glycolytic inhibitors in treatment of the disease. However, few studies have so far addressed this issue. In this report, we show a strikingly reduced mitochondrial respiratory capacity of primary human ccRCC cells, resulting in enhanced sensitivity to glycolytic inhibition by 3-Bromopyruvate (3BrPA). This effect was largely absent in established ccRCC cell lines, a finding that highlights the importance of using biologically relevant models in the search for new candidate cancer therapies. 3BrPA markedly reduced ATP production in primary ccRCC cells, followed by cell death. Our data suggest that glycolytic inhibitors such as 3BrPA, that has been shown to be well tolerated in vivo, should be further analyzed for the possible development of selective treatment strategies for patients with ccRCC.
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