
Review Article
Dichloroacetate (DCA) and Cancer: An Overview towards
Clinical Applications

Tiziana Tataranni 1 and Claudia Piccoli 1,2

1Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz),
85028, Italy
2Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71121, Italy

Correspondence should be addressed to Tiziana Tataranni; tiziana.tataranni@crob.it

Received 24 July 2019; Revised 12 September 2019; Accepted 11 October 2019; Published 14 November 2019

Guest Editor: Kanhaiya Singh

Copyright © 2019 Tiziana Tataranni and Claudia Piccoli. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in
cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA
carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA
employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA
mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of
DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer
models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate
bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the
efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA.
Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these
findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.

1. Introduction

Cancer is one of the leading causes of death worldwide.
Despite the significant progression in diagnostic and thera-
peutic approaches, its eradication still represents a challenge.
Too many factors are responsible for therapy failure or
relapse, so there is an urgent need to find new approaches
to treat it. Apart from the typical well-known properties fea-
turing malignant cells, including abnormal proliferation,
deregulation of apoptosis, and cell cycle [1, 2], cancer cells
also display a peculiar metabolic machine that offers a further
promising approach for cancer therapy [3–5]. Our group had
already suggested the importance of a metabolic characteri-
zation of cancer cells to predict the efficacy of a metabolic
treatment [6]. Drugs able to affect cancer metabolism are
already under consideration, showing encouraging results
in terms of efficacy and tolerability [7]. In the last decade,
the small molecule DCA, already used to treat acute and

chronic lactic acidosis, inborn errors of mitochondrial
metabolism, and diabetes [8], has been largely purposed as
an anticancer drug. DCA is a 150Da water-soluble acid
molecule, analog of acetic acid in which two of the three
hydrogen atoms of the methyl group have been replaced by
chlorine atoms (Figure 1(a)) [9]. DCA administration in
doses ranging from 50 to 200mg/Kg/die is associated to a
decrease of tumour mass volume, proliferation rate, and
metastasis dissemination in several preclinical models [10].
Our group had already observed an inverse correlation
between DCA ability to kill cancer cells and their mito-
chondrial respiratory capacity in oral cell carcinomas
[11]. Moreover, we recently described DCA ability to affect
mitochondrial function and retarding cancer progression in
a pancreatic cancer model [12]. To date, consistent data from
clinical trials and case reports describing DCA administra-
tion in cancer patients are available [13–16], but, despite
the growing body of literature sustaining the efficacy of
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DCA against cancer, it is not under clinical use yet. This
review is aimed at summarizing the very recent reports sug-
gesting the employment of DCA in cancer therapy, in combi-
nation with chemotherapy agents, radiotherapy, and other
chemical or natural compounds showing anticancer proper-
ties. Moreover, we described data about new purposed
pharmacological formulations of DCA able to avoid side
effects and ameliorate drug bioavailability and efficacy, fur-
ther encouraging its possible clinical employment. Finally,
we reviewed latest findings suggesting other potential
mechanisms of action of DCA, including new data about its
aptitude to affect cancer stem cell fraction.

2. DCA and Cancer: Mechanism of Action

The potential efficacy of DCA in cancer therapy comes from
metabolic properties of cancer cells, typically characterized
by increased glycolytic activity and reduced mitochondrial
oxidation, regardless of oxygen availability, the well-known
Warburg effect [17]. The excessive glycolysis and the result-
ing lactate overproduction provoke a state of metabolic
acidosis in tumour microenvironment [18]. Glycolysis-
derived lactate is taken up by surrounding cells to support
tumour growth and inhibits apoptotic cell death mechanisms
[19, 20]. Several enzymes involved in glycolysis regulate apo-
ptosis, and their overexpression in cancer cells contributes to
apoptosis suppression [21]. In this setting, salts of DCA
selectively target cancer cells shifting their metabolism from
glycolysis to oxidative phosphorylation by inhibition of pyru-
vate dehydrogenase kinase (PDK), the inhibitor of pyruvate
dehydrogenase (PDH) [10]. PDH activation fosters mito-
chondrial oxidation of pyruvate and disrupts the metabolic
advantage of cancer cells. Mitochondrial DNA mutations,
often occurring in tumorigenesis and resulting in respiratory
chain dysfunction [22, 23], make malignant cells unable to
sustain cellular energy demand. Furthermore, reducing lac-
tate production, DCA counteracts the acidosis state of
tumour microenvironment, contributing to the inhibition
of tumour growth and dissemination [24]. The delivery of

pyruvate into mitochondria causes organelles remodelling
resulting in an increased efflux of cytochrome c and other
apoptotic-inducing factors and upregulation of ROS levels
with a consequent reduction of cancer cell viability [9]
(Figure 1(b)).

3. Side Effects and Limitations to
DCA Employment

Clinical employment of DCA is available in both oral and
parenteral formulations, and doses range from 10 to
50mg/Kg/die [25]. No evidence of severe hematologic,
hepatic, renal, or cardiac toxicity confirms DCA safety [26].
Common gastrointestinal side effects often occur in a per-
centage of patients treated with DCA [15]. The best-known
limitation to DCA administration, observed both in preclin-
ical and in clinical studies, is peripheral neuropathy [27]. The
selectivity of DCA-induced damage for the nervous system
may be due to the lack of well-equipped machinery able to
handle a more sustained oxidative phosphorylation in cells
producing ATP mostly via glycolysis [28]. The resulting
mitochondrial overload compromises the antioxidant sys-
tems’ efficiency, unable to face the excessive amount of
ROS. In this setting, the contemporary administration of
antioxidants should represent a further strategy to minimize
DCA-induced neuropathy [27]. The expression and the
activity of glutathione transferase zeta1 (GSTZ1), the first
enzyme responsible for DCA clearance, may influence the
entity of damage. Nonsynonymous functional single-
nucleotide polymorphisms (SNPs) in human GSTZ1 gene
give rise to different haplotypes that are responsible for a dif-
ferent DCA kinetic and dynamics. A clear association
between GSTZ1 haplotype and DCA clearance has been
demonstrated. On this basis, a personalized DCA dosage,
not only based on body weight, may minimize or prevent
adverse effects in patients chronically treated with this drug
[29]. The occurrence of neuropathy is associated to DCA
chronic oral administration and is a reversible effect, limited
to the time of treatment [30]. The intravenous route reduces,
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Figure 1: (a) Chemical structure of DCA. (b) Mechanism of action of DCA: PDK: pyruvate dehydrogenase kinase; PDH: pyruvate
dehydrogenase. Black dotted lines, biochemical processes inhibited by DCA; Red arrows, metabolic pathways activated by DCA.
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therefore, the potential for neurotoxicity and let the achieve-
ment of higher drug concentrations bypass the digestive
system [13].

Since DCA is among water disinfection by-products
found in low concentrations in drinking water, its potential
carcinogenicity is under evaluation. Studies performed in
mouse models associate DCA early-life exposure to an
increased incidence of hepatocellular tumours [31]. It is con-
ceivable that persistent changes in cell metabolism induced
by DCA may produce epigenetic effects. Long-term induc-
tion of PDH and other oxidative pathways related to glucose
metabolism could contribute to increase reactive oxygen spe-
cies and mitochondrial stress [27]. However, no evidence of
carcinogenetic effect is reported in clinical studies, when
DCA is administered in cancer therapy.

4. Synergistic Effect of DCA and
Chemotherapeutic Agents

Combining different drugs is a well-accepted strategy to pro-
duce a synergistic beneficial effect in cancer therapy, reducing
drug dosage, minimizing toxicity risks, and overcoming drug
resistance. Coadministration of DCA and traditional chemo-
therapeutic agents has been purposed and tested in several
cancer models (Table 1). DCA treatment seems to improve
the efficacy of chemotherapy by inducing biochemical and
metabolic alterations, resulting in significant changes of can-
cer cells’ energetic balance. A study performed in non-small-
cell lung cancer (NSCLC) showed both in vitro and in vivo
that coadministration of DCA with paclitaxel increased the
efficiency of cell death through autophagy inhibition [32].
An effective combination of DCA and doxorubicin (DOX)
was tested in HepG2 cells, demonstrating the ability of
DCA to disrupt cellular antioxidant defences, thus favouring
oxidative damage in turn triggered by DOX treatment [33].
There is a strong association between PDK overexpression
and chemoresistance; thus, it is conceivable that PDK inhibi-
tion might help to resensitize cancer cells to drugs. PDK2 iso-
form overexpression was associated to paclitaxel resistance in
NSCLC. Interestingly, DCA combination with paclitaxel was
more effective in killing resistant cells than either paclitaxel
or DCA treatment alone [34]. Similarly to NSCLC, an inter-
esting in vivo study performed in advanced bladder cancer
showed an increased expression of PDK4 isoform in high
grade compared to lower-grade cancers and cotreatment of
DCA and cisplatin dramatically reduced tumour volumes
as compared to either DCA or cisplatin alone [35]. A recent
study confirmed the ability of DCA to revert PDK4-related
chemoresistance also in human hepatocellular carcinoma
(HCC) [36].

5. Synergistic Effect of DCA and Other Potential
Anticancer Drugs

A consistent body of literature suggests positive effects of
DCA coadministration with compounds currently employed
to treat other diseases but showing anticancer properties in
several cancer models (Table 2). Contemporary administra-
tion of DCA and the antibiotic salinomycin, recently redis-

covered for its cytotoxic properties as a potential anticancer
drug, has been tested in colorectal cancer cell lines. Their
treatment seems to exert a synergistic cytotoxic effect by
inhibiting the expression of proteins related to multidrug
resistance [37]. Cancer cells lacking metabolic enzymes
involved in arginine metabolism may result to sensitivity to
arginase treatment. Interestingly, a combined administration
of recombinant arginase and DCA produces antiproliferative
effects in triple-negative breast cancer, due to the activation
of p53 and the induction of cell cycle arrest [38]. COX2
inhibitors, primarily used as anti-inflammatory drugs, have
been recently suggested as antitumor drugs because of their
antiproliferative activity. An intriguing study performed in
cervical cancer cells showed the inability of DCA to kill cer-
vical cancer cells overexpressing COX2 and demonstrated
that COX2 inhibition by celecoxib makes cervical cancer cells
more sensitive to DCA both in vitro and in vivo experiments
[39]. Since DCA fosters oxidative phosphorylation by
decreasing glycolytic activity, the combination of DCA with
other drugs enhancing a state of glucose dependence may
be a promising strategy. Such an approach has been tested
in head and neck cancer in which the administration of pro-
pranolol, a nonselective beta-blocker able to affect tumour
cells’ mitochondrial metabolism, produced glycolytic depen-
dence and energetic stress, making cells more vulnerable to
DCA treatment [40]. Similar results were obtained in mela-
noma cells in which the administration of retinoic acid recep-
tor β (RARβ) inhibitors confer sensitization to DCA [41]. A
positive effect of DCA coadministration with metformin, a
hypoglycaemic drug widely used to treat diabetes was
demonstrated in a preclinical model of glioma [42] as well
as in a low metastatic variant of Lewis lung carcinoma
(LLC) [43]. Jiang and colleagues investigated the effects of
phenformin, a metformin analog, and DCA in glioblastoma,
demonstrating that contemporary inhibition of complex I
and PDK by phenformin and DCA, respectively, decreased
self-renewal and viability of glioma stem cells (GSCs), thus
suggesting their possible employment to affect cancer stem
cell fraction [44].

6. Combined Use of DCA and
Natural Compounds

The clinical employment of natural compounds represents a
promising novel approach to treat several diseases [45]. An
increasing body of literature supports the detection, among
natural compounds, of biologically active substances isolated
by plants, mushrooms, and bacteria or marine organism that
show beneficial effects for human health [46–48]. The
assumption of natural compounds or their derivatives seems
to represent an encouraging approach to prevent cancer
initiation or recurrence, and it is generally called chemo-
prevention [49]. Moreover, natural substances produce
beneficial effects in cancer therapy when coadministered
with other drugs, showing their ability to overcome drug
resistance, to increase anticancer potential, and to reduce
drug doses and toxicity [50, 51]. Interestingly, the coad-
ministration of DCA and natural compounds has been
recently purposed. A study investigated the combined
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effect of DCA with essential oil-blended curcumin, a com-
pound with beneficial properties both in prevention and
treatment of cancer [52], demonstrating an anticancer
potential against HCC [53]. In particular, the combination
of both compounds synergistically reduced cell survival,
promoting cell apoptosis and inducing intracellular ROS
generation. Betulin, a natural compound isolated from
birch bark, is already known for its antiproliferative and
cytotoxic effects against several cancer cell lines [54–56].
An in vitro investigation of the antitumor activity of betu-
lin derivatives in NSCLC confirmed its ability to inhibit
in vivo and in vitro growth of lung cancer cells, blocking
G2/M phase of the cell cycle and inducing caspase activa-
tion and DNA fragmentation. Interestingly, betulin deriva-
tive Bi-L-RhamBet was able to perturb mitochondrial
electron transport chain (ETC), inducing ROS production.
Given the property of DCA to increase the total oxidation
of glucose in mitochondria via the Krebs cycle and ETC,
the authors combined Bi-L-RhamBet with DCA, demon-
strating its significant potentiated cytotoxicity [57].

7. DCA and Radiosensitization

Radiotherapy represents a further strategy to treat cancer and
provides a local approach by the administration of high-
energy rays [58]. The main effect of radiation is the induction
of ROS with a consequent DNA damage, chromosomal
instability, and cell death by apoptosis [59]. However, several
tumours show or develop radioresistance that is responsible
for radiotherapy failure and high risk of tumour recurrence
ormetastasis [60]. Several factorsmay be responsible of radio-
resistance [61]. Among these, hypoxia, a common condition
of tumour microenvironment characterized by low oxygen
levels and reduced ROS species generation, can block the effi-
cacy of ionizing radiations [62]. Increasing tumour oxygena-
tion so to favour a considerable amount of ROS [63] or
directly induce ROS production may therefore represent a
strategy to increase radiosensitization [64, 65]. In this setting,
DCA administration, known to induce ROS production
[11, 66], could represent a strategy to overcome tumour
radioresistance. Moreover, metabolic alterations featuring
cancer development are known to affect radiosensitivity
[67, 68]. Therefore, targeting cancer metabolic intermedi-
ates may represent a strategy to improve a selective cancer
response to irradiation [69]. The efficacy of DCA to
increase radiation sensitivity has been already demon-
strated both in glioblastoma cells [70] and in oesophageal
squamous cell carcinoma [71]. More recently, it was
demonstrated that DCA increases radiosensitivity in a cel-
lular model of medulloblastoma, a fatal brain tumour in
children, inducing alterations of ROS metabolism and
mitochondrial function and suppressing DNA repair
capacity [72]. Since the role of immunotherapy in the res-
toration of the immune defences against tumour progres-
sion and metastasis is arousing great attention in the last
years [73], Gupta and Dwarakanath provided a state of
the art of the possible effects of glycolytic inhibitors,
including DCA, on tumour radiosensitization, focusing
their attention on the interplay between metabolic modi-

fiers and immune modulation in the radiosensitization
processes [74]. Interestingly, they reported the ability of
DCA to promote immune stimulation through the inhibi-
tion of lactate accumulation, further sustaining its utiliza-
tion as adjuvant of radiotherapy.

8. DCA and New Drug Formulations

There is a growing interest in designing new drug formula-
tions so to improve drug delivery, increasing the efficacy
and reducing the doses and consequently undesirable effects.
In this setting, drug delivery systems (DDSs) represent a new
frontier in the modern medicine [75]. DDSs offer the
possibility to create a hybrid of metal-organic frameworks
(MOFs), combining the biocompatibility of organic system
to the high loadings of inorganic fraction [76]. Several lines
of evidence suggest an efficient functionalization of nanopar-
ticles with DCA. Lazaro and colleagues [77] explored differ-
ent protocols for DCA functionalization of the zirconium
(Zr) terephthalate (UiO-66) nanoparticles. They demon-
strated the cytotoxicity and selectivity of the same DDSs
against different cancer cell lines. Moreover, they excluded
a possible response of the immune system to DCA-MOF
in vitro. The same group later showed the possibility to load
Zr MOFs with a second anticancer drug, such as 5-
fluorouracil (5-FU), so to reproduce the synergistic effect of
the two drugs [78]. Zirconium-based MOF loaded with
DCA was also purposed as an attractive alternative to
UiO-66, showing selective in vitro cytotoxicity towards
several cancer cell lines and a good toleration by the
immune system of several species [79]. Recently, Štarha
et al. [80] synthesized and characterized, for the first time,
half-sandwich complexes containing ruthenium or osmium
and DCA (Figure 2(a)). Both Ru-dca and Os-DCA
complexes were screened in ovarian carcinoma cell lines,
demonstrating to be more cytotoxic than cisplatin alone.
Both complexes were able to induce cytochrome c (Cytc)
release from mitochondria, an indirect index of apoptosome
activation and seemed to be less toxic towards healthy pri-
mary human hepatocytes, thus indicating selectivity for can-
cer over noncancerous cells. Promising results were also
obtained in triple-negative breast cancer cells [81]. Rhenium
(I)-DCA conjugate has demonstrated an efficient penetration
into cancer cells and a selective accumulation into mitochon-
dria, inducing mitochondrial dysfunction and metabolic dis-
orders [82]. In the recent years, several multiactive drugs
have been designed to contemporary target different intracel-
lular pathways using a single formulation. A safe, simple,
reproducible nanoformulation of the complex doxorubicin-
DCA (Figure 2(b)) was successfully tested in a murine mela-
noma model, showing an increase in drug-loading capability,
lower side effects, and enhanced therapeutic effect [83]. Dual-
acting antitumor Pt (IV) prodrugs of kiteplatin with DCA
axial ligands have been synthesized (Figure 2(c)), character-
ized, and tested in different tumour cell lines and in vivo
[84]. To overcome cancer resistance, triple action Pt (IV)
derivatives of cisplatin have been proposed as new potent
anticancer agents, able to conjugate the action of cisplatin,
cyclooxygenase inhibitors, and DCA (Figure 2(d)) [85]. A
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novel complex containing DCA, Platinum, and Biotin (DPB)
has been successfully tested, exhibiting multifacet antitumor
properties (Figure 2(e)). Authors demonstrated the ability
of such a prodrug to affect energy metabolism, to promote
apoptosis, and to interact with DNA. The high selectivity of
biotin for cancer cells minimizes the detrimental effects on
normal cells and improves the curative effect on tumours
[86]. Features and experimental evidence of the main classes
of compounds are summarized in Table 3.

9. Other Proposed Mechanisms of
Action of DCA

The metabolic shift from glycolysis to glucose oxidation due
to the inhibition of PDK and the consequent activation of
PDH is the best-known and well-accepted molecular effect
of DCA administration. The consequent biochemical alter-
ations, including ROS increase and mitochondrial membrane
potential variation, may be responsible for proliferation
arrest and cancer cell death, thus explaining DCA beneficial
potential in cancer treatment [9]. However, the molecular
intermediates activated after DCA administration are still
unknown. It is conceivable that such a small molecule might
directly or indirectly affect other cellular and molecular tar-
gets (Figure 3), displaying other mechanisms of action, so
to explain its efficacy also in cellular models where it does
not produce the expected metabolic shift [12]. A proteomic
approach applied to cells of lung cancer demonstrated the
ability of DCA to increase the concentration of every TCA

intermediate while it did not affect glucose uptake or the gly-
colytic process from glucose to pyruvate [87]. In the attempt
to shed light to DCA mode of action, Dubuis and colleagues
used a metabolomics-based approach on several ovarian can-
cer cell lines treated with DCA and found a common marked
depletion of intracellular pantothenate, a CoA precursor, as
well as a concomitant increase of CoA, thus suggesting
DCA ability to increase CoA de novo biosynthesis. Since high
concentrations of CoA resulted to be toxic for cells, this met-
abolic effect could be responsible of cancer cell toxicity medi-
ated by DCA [88]. A very recent work by El Sayed et al.
introduced a novel evidence-based hypothesis, suggesting
that DCA efficiency against cancer may derive from its ability
to antagonize acetate [89], known to be an energetic substrate
for glioblastoma and brain metastases, able to enhance DNA,
RNA, and protein synthesis and posttranslational modifica-
tions, thus favouring cell proliferation and cancer progres-
sion. Moreover, high acetate levels are associated to
anticancer drug resistance [90]. It has been shown that
DCA is able to revert metabolic alterations induced by ace-
tate by restoring physiological serum levels of lactate and free
fatty acid and potassium and phosphorus concentration.
According to the authors, thanks to a structural similarity
to acetate, DCA could inhibit metabolic effects driven by ace-
tate, responsible for cancer cell growth and chemoresistance
[89]. Another possible additional effect of DCA could be
pH modulation. pH level modulation is known to affect pro-
liferation and apoptosis processes [91] as well as chemother-
apy sensitivity [92]. DCA treatment may both increase and
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reduce intracellular pH. A secondary effect of pyruvate
redirecting into the mitochondria by DCA would be lactate
reduction and a consequent increase in intracellular pH.
On the other side, DCA is able to decrease the expression
of monocarboxilate transporters and V-ATPase with a con-
sequent reduction of pH, and this especially occurs in tumour
cells, expressing higher amount of these carriers, compared
to normal counterparts [93]. Given the ability to induce rapid
tumour intracellular acidification, Albatany et al. [94]
speculated about a possible employment of DCA as a tracker
in in vivo imaging of a glioblastoma murine model and sup-
ported a therapeutic use of DCA since intracellular acidifica-
tion is known to induce caspase activation and DNA
fragmentation of cancer cells [95]. Animal models allow to
identify a possible further molecular target of DCA. Experi-
ments performed in rats highlighted the ability of DCA to
inhibit the expression of the renal cotransporter Na-K-2Cl
(NKCC) in the kidney of rats [96]. As NKCC is an important
biomarker of extracellular and intracellular ion homeostasis
regulation and participates in cell cycle progression, it plays
an important role in cancer cell proliferation, apoptosis,
and invasion. Belkahla et al. [97] investigated the interplay
between metabolism targeting and the expression of ABC
transporters, responsible for drug export from cells and a
consequent multidrug resistance, and found that DCA treat-
ment is able to reduce gene and protein expression of ABC
transporters in several tumour cells expressing wild type
p53, both in vitro and in vivo [98]. It has been already dem-
onstrated the ability of DCA to induce differentiation

through the modulation of PKM2/Oct4 interaction in glioma
cells [99]. The resulting reduction of Oct4 transcription levels
was associated to a reduction of stemness phenotype and a
significant increased sensitivity to cell stress. This observa-
tion lets to hypothesize a potential role of DCA against can-
cer stem cells (CSCs).

10. DCA and Cancer Stem Cells

There is a growing interest in targeting cancer stem cells
(CSCs) which seem to be the main responsible for tumour
relapse [100]. CSCs share the ability of self-renewal with
normal stem cells and can give rise to differentiating cells,
responsible for tumour initiation as well as malignant pro-
gression [101]. A low proliferation rate and specific meta-
bolic profile contribute to make CSCs resistant to
conventional chemotherapy [102]. An urgent need emerged
in the developing of new therapeutic agents able to affect can-
cer stem cell viability [103] in order to completely eradicate
the tumour mass. An extensive body of literature is focusing
the attention on the metabolic phenotype of CSCs, which
seem to differ from differentiated cancer cells and could
represent a therapeutic target [104–108]. In this setting, the
possible sensitivity of CSC fraction to DCA has been hypoth-
esized and tested in different cancer models. Embryonal car-
cinoma stem cells represent one of the more appropriate
models for the study of CSC maintenance and differentiation
and the identification of drugs and molecules able to modu-
late these processes [109]. Studies performed on embryonic
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stem cells (ESCs) constitute preliminary important proofs
supporting a possible efficacy of DCA [110]. Interestingly,
DCA treatment of ESCs promotes loss of pluripotency and
shifts towards a more active oxidative metabolism, accompa-
nied by a significant decrease in HIF1a and p53 expression
[111]. Vega-Naredo et al. [112] described the importance of
mitochondrial metabolism in directing stemness and differ-
entiation in such a model. They characterized the metabolic
profile of stem cell fraction and guessed the less susceptibility
of stem phenotype to mitochondrial-directed therapies.
Forcing CSCs towards an oxidative metabolism by DCA
treatment enabled departure from stemness to differentia-
tion. Several reports support the existence of CSCs in glioma
[113, 114], and the efficiency of DCA to hit CSCs has been
extensively evaluated in such a cancer type, so difficult to
treat with conventional therapies and characterized by low
rates of survival. Already in 2010, Michelakis and colleagues
had suggested, both in vitro and in vivo, DCA ability to
induce apoptosis of cancer stem cell fraction [26]. A rat
model of glioma, recapitulating several features of human
glioblastoma, confirmed the efficacy of DCA to potentiate
apoptosis of glioma CSCs, characterized by a significant gly-
colytic pathway overstimulation, compared to normal stem
cells [115]. Also, Jiang et al. investigated the effect of DCA
on the small population of glioma stem cells (GSCs) isolated
from glioblastoma, demonstrating a reduction of self-renewal
properties and an increase in cell death percentage [44].
Moreover, an in vivo test on mice bearing DCA-treated
GSC-derived xenografts showed a significant increase in
overall survival. DCA treatment was also tested in melanoma
stem cell fraction, and the derived bioenergetics modulation
was able to counteract protumorigenic action of a c-Met
inhibitor [116]. A very recent work performed on human
hepatocellular carcinoma identified PDK4 overexpression
in spheres originated from cancer cells, featuring a defined
stem-like phenotype. Interestingly, DCA treatment was able
to reduce cell viability both of cancer-differentiated cells
and cancer stem cells and reversed chemoresistance to con-
ventional therapy [36]. Our group has recently experienced
the ability of DCA to reduce the expression of cancer stem
cell markers CD24/CD44/EPCAM in a pancreatic cancer cell
line as well as to compromise spheroid formation and viabil-
ity [12], further corroborating data obtained in other cancer
models. Together with chemoresistance, also radioresistance
represents a limit to an efficient cancer treatment, and CSCs
seem to be responsible for such refractoriness [117]. Sun et al.
demonstrated the ability of DCA to increase radiosensitivity
of medulloblastoma cells by affecting stem-like clones, reduc-
ing the expression percentage of CD133-positive cells and
reducing sphere formation [72]. Moreover, in the same cellu-
lar model, they showed an altered mechanism of DNA repair
induced by DCA able to explain the increased effectiveness of
radiotherapy.

11. Conclusions

Targeting cancer cell metabolism represents a new pharma-
cological approach to treat cancer. DCA ability to shift
metabolism from glycolysis to oxidative phosphorylation

has increased the interest towards this drug already known
for its anticancer properties. The evidence accumulated in
the last years confirms the capability of DCA to overcome
chemo, radioresistance in several cancer types and lets to
hypothesize additional cellular targets able to explain its skill
to kill cancer cells. There is a need to design further clinical
studies now limited to poor-prognosis patients with
advanced, recurrent neoplasms, already refractory to other
conventional therapies. Its potential efficacy against cancer
stem cells as well as the development of new drug formula-
tions takes us closer to reach an effective clinical employment
of DCA.
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