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CGRP= calcitonin-gene related protein 

CNS=central nervous system 

CRH= corticotropin-releasing hormone 

CSF= cerebrospinal fluid 

CVD= cardiovascular disease 

FAD=flavine adenine nucleotide 

FMS= fibromyalgia syndrome 

GWI= Gulf War Illness 
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HPA=hypothalamic-pituitary-adrenal axis 
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MetS=metabolic encephalomyelitis 
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MIF=macrophage inflammatory factor  

MiRNA= microRNA 
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mtDNA= mitochondrial DNA 
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NGF=nerve growth factor 

NE=norepinephrine 

PTH= parathyroid hormone 

PDH=pyruvate dehydrogenase 

PDGF=platelet-derived growth factor 

PPS/IC=Pelvic pain syndrome/Interstitial cystitis 

Poly (I:C)=polyinosinic:polycytidylic acid 

POTS= Postural orthostatic tachycardia syndrome 

PPAR=peroxisome proliferator-activated receptor 

RANKL= Receptor activator of nuclear factor kappa-Β ligand 

ROS=reactive oxygen species 

SCF=stem cell factor  

SEID=systemic exertion intolerance disease 

SP= substance P 

TCA=tricarboxylic acid 

T2DM=Type 2 Diabetes Mellitus 

TGFβ=transforming growth factor β  

TNF= tumor necrosis factor 

UCP2= uncoupling protein 2 

VEGF=vascular endothelial growth factor 
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Abstract 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease characterized 

by debilitating fatigue, lasting for at least 6 months, with associated malaise, headaches, sleep 

disturbance and cognitive impairment, which severely impacts on quality of life. A significant 

percentage of ME/CFS patients remains undiagnosed, mainly due to the complexity of the disease and 

the lack of reliable objective biomarkers. ME/CFS patients display decreased metabolism and the 

severity of symptoms appears to be directly correlated to the degree of metabolic reduction that may 

be unique to each individual patient. However, the precise pathogenesis is still unknown preventing 

the development of effective treatments. The ME/CFS phenotype has been associated with 

abnormalities in energy metabolism, apparently due to mitochondrial dysfunction, in the absence of 

mitochondrial diseases, resulting in reduced oxidative metabolism, mitochondria may be further 

contributing to the ME/CSF symptomatology by extracellular secretion of mitochondrial DNA, which 

could act as an “innate” pathogen and create an auto-inflammatory state in the hypothalamus. We 

propose that stimulation of hypothalamic mast cells by environmental neuroimmune pathogenic and 

stress triggers activates microglia leading to focal inflammation in the brain and disturbed homeostasis. 

This process could be targeted for the development of novel effective treatments.   
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Introduction 
Myalgic Encephalomyelitits/Chronic Fatigue Syndrome (ME/CFS) is defined by the original 

diagnostic criteria (Fukuda, et al., 1994), and by the Canadian Consensus Criteria (Carruthers, et al., 

2003), (Carruthers, 2007) followed by an international consensus (Carruthers, et al., 2011) and newer 

clinical diagnostic criteria developed by an NIH pathways to prevention workshop (Haney, et al., 2015) 

and the Institute of Medicine (Germain, et al., 2017). ME/CFS  has also been known by other names 

(Unger, et al., 2016), most recently as Systemic Exertion Intolerance Disease (SEID),(Monro and Puri, 

2018) 

ME/CFS is a complex disease that involves the muscular, nervous, hormonal and immune 

systems (Natelson, 2001),(Georgiades, et al., 2003), (Brurberg, et al., 2014), (Brigden, et al., 2017), 

(Scheibenbogen, et al., 2017). As the name implies, ME/CFS is characterized by debilitating fatigue 

lasting for at least 6 months, with severe impairment of daily functioning and associated symptoms, 

such as sleep disturbances, muscle aches, flu-like malaise, gastrointestinal symptoms, orthostatic 

intolerance, chronic or intermittent pain, as well as cognitive impairment reflected as memory and 

concentration difficulties (Natelson, et al., 2007), {25039),(Yancey and Thomas, 2012), (Ganiats, 

2015), (Komaroff, 2015), (Scheibenbogen, et al., 2017).  

 The intensity of symptoms appears to be significantly affected by exertion (Rowe, et al., 2016). 

Anxiety and increased vulnerability to stress are also common in ME/CFS patients, including children 

affected by the disease (Smith, et al., 2003), (Crawley, et al., 2009). Abnormal hypothalamic-pituitary-

adrenal (HPA) axis activity has been observed in many patients (Cleare, et al., 2001), thus suggesting 

an association between ME/CFS and disturbed neuro-endocrine mechanisms. Interestingly, ME/CFS 

patients are more likely to have migraine headaches than normal controls (Ravindran, et al., 2011). 

ME/CFS is often comorbid with disorders (Table 1) that are characterized by central nervous system 

(CNS) dysfunction, (Martinez-Martinez, et al., 2014) and which are also negatively affected by stress 

(Theoharides and Cochrane, 2004), (Theoharides, 2013): Gulf War Illness (GWI) (Gwini, et al., 2016),   
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Pelvic Pain Syndrome/Interstitial Cystitis (PPS/IC) (Whitmore and Theoharides, 2011), Fibromyalgia 

Syndrome (FMS) (Theoharides, et al., 2015c), and Mastocytosis (Theoharides, et al., 2015d) or Mast 

Cell activation syndrome (MCAS) (Petra, et al., 2015), (Akin, 2014). However, there are distinct 

differences between these other diseases such as between ME/CFS and FMS (Abbi and Natelson, 

2013), (Pejovic, et al., 2015). 

ME/CFS is estimated to affect as many as 2.5 million people in the US, which corresponds to 

about 1% of the total US population. (Vincent, et al., 2012), (Komaroff, 2015), (Ganiats, 2015) Other 

studies  (Jason, et al., 2009), including Minnesota (Vincent, et al., 2012), as well as from the UK 

(Nacul, et al., 2011), (Collin, et al., 2017), Norway (Bakken, et al., 2014) and Italy (Capelli, et al., 

2015) report a lower incidence. Women are apparently more susceptible than men, with an estimated 

ratio of 4:1 (Germain, et al., 2017). The disease predominantly affects adults, even though symptoms 

may appear in childhood andadolescence (Crawley, 2014), (Nijhof, et al., 2011) ,(Jason, et al., 2006). 

Unfortunately, a significant number of suspected ME/CFS patients remain undiagnosed (Jason, et al., 

2006) mainly due to the complexity of the disease and the lack of reliable diagnostic biomarkers 

(Klimas, et al., 2012). Multisystem diseases such as ME/CFS are often very timely and expensive to 

diagnose, and most patients go through years of searching and agony, as well as significant financial 

expenditures and impairment of their quality of life (Germain, et al., 2017). The economic health 

burden for ME/CFS in the USA was estimated to be   $24 billion in 2018.   (Jason, et al., 2008)  . This 

makes imperative the need for the development of objective diagnostic biomarkers that will not only 

assist in the critical identification of patients with ME/CFS, but will also provide essential information 

on the pathophysiological mechanisms involved.  

 A number of mechanisms and molecules have been implicated in the pathogenesis of ME/CFS 

(Gerwyn and Maes, 2017). Autoimmune (Sotzny, et al., 2018) and metabolic (Tomas and Newton, 

2018) pathways appear to play key roles in the pathophysiology of ME/CFS (Theoharides, et al., 

2004b), (Maes, et al., 2011), (Booth, et al., 2012). Neuroimmune and neuroendocrine processes might 
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also be involved, but are still largely unknown (Dietert and Dietert, 2008), (Bower, 2012). Clinical and 

subclinical viral infections have been suspected, but never confirmed, as a possible risk factor for the 

development of ME/CFS (Katz, et al., 2009), (Fremont, et al., 2009). The involvement of 

neuroinflammation of the brain has recently been suggested without any specific pathogenetic 

mechanism. (Glassford, 2017), (Tomas and Newton, 2018), (Morris, et al., 2018) Here we give an 

overview of the current understanding of the associations between ME/CFS and metabolic disease, 

and propose that focal inflammation in the hypothalamus due to local activation of mast cell and 

microglia, may alter homeostasis and provide a target for novel treatment approaches.   

 

Metabolic Irregularities 

ME/CFS has been found to involve irregularities in the metabolism, energy, amino acid, nucleotide, 

nitrogen, hormone, and oxidative stress metabolism (Armstrong, et al., 2014), (Germain, et al., 2017). 

In particular, it has been proposed that the severe and prolonged fatigue experienced by ME/CFS 

patients may be a consequence of abnormalities in bioenergetic function (Tomas, et al., 2017). Much 

evidence suggests that the pathophysiology of ME/CFS is highly associated with alterations in normal 

energy metabolic processes (Fluge, et al., 2016) and abnormalities in cellular bioenergetics (Fluge, et 

al., 2016;Hornig, et al., 2015), (Fluge, et al., 2016), (Tomas, et al., 2017). There is also evidence to 

suggest that patients with ME/CFS might be at an increased risk for developing metabolic syndrome-

associated diseases, such as diabetes, cardiovascular disease and thyroid disease (Maloney, et al., 

2009). 

Apparently, systemic exertion intolerance in repeated cardio-pulmonary exercise tests was 

demonstrated in ME/CFS patients present as compared to healthy controls suggesting insufficient 

metabolic adaptation to incremental exercise (Vermeulen and Vermeulen, I, 2014), (Keller, et al., 

2014). It should be noted, that the Vermeulen and Vermeulen study including controls, which were 

not matched to ME/CFS in terms of fitness, while the Keller et al study had no controls. McCully et al 
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published a number of papers showing that when matched for aerobic fitness, cardiorespiratory 

responses to exercise in patients with ME/CFS only and ME/CFS plus FM were not different from 

those in sedentary healthy controls (Cook, et al., 2006). 

Such  intolerance, if real, may  involve a switch to anaerobic glycolysis, i.e. a reduction in 

oxidative metabolism, and an increase in lactate production (Murrough, et al., 2010), (Shungu, et al., 

2012b), which constitute the most common metabolic alterations observed in patients with ME/CFS. 

These characteristics have mainly been attributed to deconditioning, a state characterized by loss of 

muscle tone and power from prolonged lack of use (Bains, 2008). However, even though increased 

lactate production was originally noted, possibly related to the reduction of post-exercise oxygen 

delivery (McCully, et al., 2004), the same effect could not be substantiated suggesting a possible 

decrease in oxygen delivery perhaps due to reduced blood flow (McCully and Natelson, 1999). In 

particular, there was elevated ventricular lactate, but no significant difference in high energy 

phosphatase metabolites in patients with ME/CFS as compared to patients with major depressive 

disorder or healthy volunteers (Shungu, et al., 2012a). In some cases, alterations in glucose utilization 

and lactate production were evident only after physical exercise of ME/CFS patients (Fluge, et al., 

2016). ME/CFS plasma and serum metabolomics point in the direction of a hypometabolic state 

(Naviaux, et al., 2016), (Fluge, et al., 2016), (Germain, et al., 2017), (Nagy-Szakal, et al., 2018).  

 

ME/CFS association with metabolic disease 

Metabolic syndrome (MetS) is a disorder characterized by an imbalance between energy expenditure 

and storage, and is diagnosed by the simultaneous presence of three of the following five conditions: 

(a) central type (or abdominal), (b) obesity, (c) increased blood pressure, elevated fasting glucose 

levels, (d) high levels of serum triglycerides, and (e) decreased high-density lipid (HDL) cholesterol 

levels (Mottillo, et al., 2010), (Kaur, 2014). MetS is also linked to insulin resistance, a condition in 

which, despite normal insulin secretion by pancreatic β-cells and hyperinsulinemia, can lead to 
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hyperglycaemia and the development of Type II diabetes mellitus (T2DM) (Petersen and Shulman, 

2006). In addition, high blood pressure and high cholesterol levels are closely linked to increased 

oxidative stress and endothelial dysfunction, thus enhancing the pro-inflammatory nature of 

microvascular atherosclerotic disease (Li, et al., 2007). In other words, subjects with MetS are at an 

increased risk of developing cardiovascular disease (CVD) and T2DM (Isomaa, et al., 2001), (Dekker, 

et al., 2005), (Petersen and Shulman, 2006). 

 Approximately half of patients with ME/CFS also appear to have a previously undiagnosed 

medical condition, most often diabetes, CVD and thyroid diseases (Maloney, et al., 2009). Few studies 

have investigated the possible associations between MetS and ME/CFS (Maloney, et al., 2009), 

(Naviaux, et al., 2016), (Germain, et al., 2017), (Bozzini, et al., 2018). It was first suggested that 

patients with ME/CFS were twice as likely to have MetS, as compared to controls, after adjusting for 

body-mass index (BMI), waist circumference, triglycerides and glucose levels (Maloney, et al., 2009). 

MetS components in the ME/CFS group were significantly correlated with worse fatigue, but not with 

worse physical or mental functioning, contrary to previous observations (Tsai, et al., 2008), (Maloney, 

et al., 2009). A correlation of MetS with fatigue has also been observed in patients with FMS, a 

condition clinically similar to ME/CFS in which muscle pain and fatigue are the main symptoms; 

specifically, MetS components [low-density lipoprotein (LDL) cholesterol, as well as urinary 

norepinephrine (NE)/epinephrine and NE/cortisol rations], were significantly higher in women with 

FMS, as compared to healthy controls (Loevinger, et al., 2007).  

 Some studies have reported abnormal findings concerning the cardiovascular system, but one 

study was in patients with small hearts (Miwa and Fujita, 2009;Azevedo, et al., 2007) and the other 

was in adolescents (Wyller, et al., 2008),and autonomic nervous system (ANS) dysfunction (Meeus, 

et al., 2013). Low blood pressure was noted in certain ambulatory cases of patients with ME/CFS 

(Newton, et al., 2009), (Wyller, et al., 2011), (Frith, et al., 2012). However, when patients with 
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ME/CFS were matched to healthy controls by V02 max there were no differences in cardiovascular 

parameters (Cook, et al., 2006).  

Dysautonomia including Postural orthostatic tachycardia syndrome (POTS) may be present in 

many patients with ME/CFS (Hollingsworth, et al., 2010) and could also explain other ME/CFS 

symptoms, such as fatigue, vertigo, decreased concentration, tremors and nausea (Bozzini, et al., 

2018). Interestingly, the low systolic blood pressure observed in ME/CFS patients is usually 

accompanied by exaggerated diurnal variation, which is inversely correlated with increasing fatigue 

(Davis, et al., 2000), (Newton, et al., 2009).  

Overall, it appears that metabolic disease components show significant correlations with the 

fatigue in ME/CFS patients and not with the disease itself. For example, blood pressure, as well as 

insulin resistance, are probably secondary to fatigue, and most probably reflect the lack of physical 

activity and prolonged lack of muscle use in ME/CFS patients. This makes sense if one considers that 

low blood pressure could give rise to fatigue through brain/or muscle hypoperfusion (Newton, et al., 

2009), and that insulin sensitivity is highly dependent on the oxidative capacity of the muscle (Canto 

and Auwerx, 2009).  

Metabolomics, small-molecule metabolite profiling (Daviss B., 2005), has provided relevant 

information that could distinguish ME/CFS patients (Naviaux, et al., 2016). Several studies have 

performed metabolite analysis of various biological fluids, [urine, blood, serum and cerebrospinal fluid 

(CSF)] from ME/CFS patients (Georgiades, et al., 2003), (Jones, et al., 2005), (Niblett, et al., 2007), 

(Suarez, et al., 2010), (Armstrong, et al., 2012), (Armstrong CW, et al., 2015), (Hornig, et al., 2016). 

However, despite confirming disturbances in energy, amino acid, nucleotide, nitrogen, hormone and 

oxidative stress metabolomics, they have not been able to determine a distinct, reproducible metabolic 

profile for ME/CFS (Germain, et al., 2017). Nevertheless, one study identified nine biochemical 

disturbances that were common to both male and female patients with ME/CFS, but not healthy 

controls (Naviaux, et al., 2016). Overall, there were marked decreases in sphingolipid, 
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glycosphingolipid, phospholipid, purine, microbiome aromatic amino acid and branch chain amino 

acid metabolites, as well as in flavine adenine nucleotide (FAD) and lathosterol, which identified 

hypometabolic profile for ME/CFS. These changes correlated with disease severity and had an 

apparent diagnostic accuracy that exceeded 90% (Naviaux, et al., 2016). Interestingly, the metabolic 

abnormalities found in ME/CFS patients, were opposite (i.e. decreased instead of being increased), to 

those observed in MetS suggesting that ME/CFS patients could be more resistant to hypertension, 

dyslipidaemia, obesity and insulin resistance even though previous studies discussed above had 

reported an increased association between ME/CFS and metabolic syndrome. 

 Another study that used targeted plasma metabolomics reported a similar trend of 

hypometabolic state in ME/CFS patients (Germain, et al., 2017). Even though the metabolite 

compounds were not all identical to the ones studied by Naviaux at al., both agreed on the presence of 

disturbances in lipid and fatty acid metabolism (Germain, et al., 2017). These findings are also in 

agreement with reported deficiencies in the urea and the TCA cycles, (ornithine/citrulline and 

pyruvate/isocitrate ratios), which ultimately result in reduced levels of ATP production in patients with 

ME/CFS (Yamano, et al., 2016). Other studies revealed that ME/CFS have reduced substrates that 

enter oxidation downstream of pyruvate dehydrogenase (PDH), such as glutamine, glutamate and 

phenylalanine, thus suggesting impaired pyruvate catabolism, which ultimately results in increased 

utilization of acetyl-CoA-producing amino acids as alternative substrates for fuelling aerobic 

metabolism via the TCA cycle (Armstrong, et al., 2012), (Armstrong CW, et al., 2015), (Fluge, et al., 

2016). Reduced concentrations of amino acids that maintain TCA cycle capacity were detected in 

patients with ME/CFS (Fluge, et al., 2016), suggesting impaired fuelling of the TCA cycle by pyruvate. 

This finding is in line with the results of other studies where TCA cycle intermediates were also found 

to be reduced in both urine (Niblett, et al., 2007) and plasma (Yamano, et al., 2016) samples from 

ME/CFS patients.  
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Mitochondrial dysfunction 

Overall, the ME/CFS phenotype has been associated with mitochondrial dysfunction, 5' adenosine 

monophosphate-activated protein kinase (AMPK) impairment, oxidative stress and skeletal muscle 

cell acidosis (Myhill, et al., 2009), (Kennedy, et al., 2005), (Brown, et al., 2015), (Tomas, et al., 2017). 

The main ME/CFS symptoms, such as fatigue, exercise intolerance and myalgia, are also shared by 

patients diagnosed with primary mitochondrial disorders (Filler, et al., 2014), (Gorman, et al., 2015). 

However, unlike the mitochondrial dysfunction observed in mitochondrial disorders is known to be 

caused by mutations in either nuclear or mitochondrial DNA (mtDNA) (Tomas, et al., 2017), these 

mutations in patients with ME/CFS are extremely rare (Billing-Ross, et al., 2016), (Schoeman, et al., 

2017). In addition, certain mitochondrial enzymes have been found to discriminate between 

mitochondrial disorders and ME/CFS. Notably respiratory chain complex (RCC) I, III and IV activity 

(Smits, et al., 2011) appears to be significantly higher in ME/CFS patients. Instead, ATP production 

rate was found to be within the normal range in ME/CFS patients, but significantly decreased in 

approximately three quarters of the patients with mitochondrial disease, and was therefore regarded as 

the most reliable discrimination test (Smits, et al., 2011). 

Muscle biopsies from ME/CFS patients have shown mitochondrial degeneration, atrophy of 

type II fibers and fusion of mitochondrial cristae, decreased mitochondrial membrane permeability, 

severe deletions in mtDNA genes that are involved in cellular energy processes, as well as oxidative 

damage from increased production of free radicals (Myhill, et al., 2009), (Morris and Maes, 2013). 

Mitochondrial dysfunction has also been observed in peripheral mononuclear blood cells (PMBC) of 

ME/CFS patients, even though it has not yet been elucidated if they constitute the cause of the disease 

(Myhill, et al., 2009), (Myhill, et al., 2013), (Tomas, et al., 2017). Notably, a significant correlation 

has been observed between the extent of mitochondrial dysfunction and the degree of ME/CFS 

severity, thus suggesting that mitochondrial dysfunction might be a contributing factor in ME/CFS 

pathology, at least in a subset of patients (Myhill, et al., 2009), (Booth, et al., 2012). However, it is 
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difficult to assess mitochondrial dysfunction that is usually done by measuring the levels of lactate and 

pyruvate in the serum, best done by serial serum sampling from an arm after a brief period of exercise.    

When limited amounts of oxygen are available, as is usually the case with intense exercise, 

anaerobic glycolysis, or otherwise called the lactic acid system, provides an effective means of energy 

production. During this process, glucose is catabolized via the glycolytic pathway, resulting in 

pyruvate being converted to lactate by lactate dehydrogenase. This process lasts 10-30 seconds during 

maximal effort and produces about 5% of the glucose energy potential in the form of adenosine-5´-

triphosphate (ATP) molecules (2 molecules of ATP for every molecule of glucose). ATP synthesis can 

be estimated by measuring the anaerobic threshold (AT), i.e. the rate of oxygen consumption at work 

rate when blood lactic acid begins to accumulate, and the maximal work rate (Morris and Maes, 2014). 

The AT indicates a switch during which ATP synthesis stops being produced by mitochondria and 

occurs via the anaerobic route (Morris and Maes, 2012), whereas anaerobic threshold and recovery 

time following exercise depends on lactate production and clearance rates (Fluge, et al., 2016). When 

aerobic conditions are normal, pyruvate is transported into mitochondria and converted to acetyl-CoA 

by either PDH or via degradation of fatty acids and ketogenic amino acids. In either case, acetyl-CoA 

is further oxidized in the tri-carboxylic acid (TCA) cycle, producing some ATP, and the electron 

transport chain (respiratory chain), which generates ATP from ADP by oxidative phosphorylation (ox-

phos). Acetyl-CoA thereby serves to fuel mitochondrial respiration and ATP production by oxidative 

phosphorylation (Fluge, et al., 2016) for essential tissue functions (Myhill, et al., 2009).  

Reduced ATP production is associated with increased levels of reactive oxygen species (ROS), 

which may ultimately lead to mitochondrial damage and the hypometabolic profile of ME/CFS 

(Naviaux, et al., 2016), (Armstrong CW, et al., 2015). Severely reduced or impaired mitochondrial 

oxidative phosphorylation in ME/CFS patients is highly correlated with significantly increased 

intracellular lactate levels, even in the recovery phase of a mild exercise where ATP synthesis is 

extremely low (Vermeulen, et al., 2010), (Morris and Maes, 2014).  
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 Among the factors that may contribute to mitochondrial dysfunction, the most prominent ones 

appear to be increased levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and 

tumor necrosis factor (TNF), which directly inhibit mitochondrial respiration by increasing 

mitochondrial membrane permeability, which ultimately leads to membrane depolarization and an 

increased production of ROS (Morris and Maes, 2013). However, even though TNF is elevated in the 

serum of patients with FMS, (Theoharides, et al., 2010c) it was not consistently elevated in ME/CFS 

(Brenu, et al., 2011), but was apparently associated only with increased IL-4 (Hanson, et al., 2001). 

There was also no significant difference in serum cytokine levels across the night (Nakamura, et al., 

2010) or post exercise (Nakamura, et al., 2013). There is some evidence of stronger correlation of 

cytokines alterations early in the course of illness rather than severity (Hornig, et al., 2015). It has been 

proposed that “cytokine co-expression networks” may be more predictive of ME/CFS phenotype 

(Klimas, et al., 2012), (Hornig, et al., 2016), but looking for such biomarkers in the periphery would 

not reflect inflammation in the brain. One study reported that of 27 cytokines studied in CSF from 

ME/CFS patients, only IL-10 was significantly reduced {26107}. Another paper using network 

analysis  of CSF cytokine levels reported an inverse relationship with interleukin 1 receptor antagonist 

only in classical, but not in atypical ME/CFS (Hornig, et al., 2017).  

Certain microRNAs (miRNAs) may turn out to be distinct or differentially expressed in 

ME/CFS.  Recently, miRNAs have been implicated in the hypothalamic control of energy homeostasis 

(Najam, et al., 2018). However, the available studies in patients with ME/CFS did not report any 

consistent pattern whether pre- or post-exercise, plasma,(Brenu, et al., 2014) NK cells (Petty, et al., 

2016) or CD8+ cells (Brenu, et al., 2012). One recent important study showed exercise induced changes 

in CSF fluid from patients with ME/CFS, Gulf War Illness and sedentary controls found twelve 

diminished miRNAs after exercise (Baraniuk and Shivapurkar, 2017), (Baraniuk and Shivapurkar, 

2018). 
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Focal Inflammation in the Diencephalon and Dysfunctional HPA axis 

Neuroinflammation (Nakatomi, et al., 2014), (Glassford, 2017), (Tomas and Newton, 2018), (Morris, 

et al., 2018) and immune dysfunction (Morris, et al., 2014), (Nijs, et al., 2014), (Trivedi, et al., 2018) 

have been suggested as being involved in the pathogenesis of ME/CFS, but serum levels of 

proinflammatory cytokines have not been confirmed as discussed later. Considerable evidence 

indicates that ME/CFS is characterized by dysfunction of the HPA axis, (Theoharides, et al., 2010b), 

(Morris, et al., 2016) and symptoms are known to worsen by stress (Smith, et al., 2003)), (Theoharides 

and Cochrane, 2004), ((Crawley, et al., 2009;Theoharides and Cochrane, 2004;Theoharides, 2013). 

Stress can also worsen or precipitate obesity and cardiovascular events (Theoharides, et al., 2008), 

(Theoharides, et al., 2011), (Alevizos, et al., 2013), (Sismanopoulos, et al., 2013), through local 

inflammation (Matusik, et al., 2012;Libby, et al., 2002).  

Corticotropin-releasing hormone (CRH) is secreted from the hypothalamus under stress and 

stimulates the HPA axis via activation of two main types of G protein-coupled receptors, CRHR-1 and 

CRHR-2 (Chrousos, 1995). CRH secreted under acute stress, has been implicated in the 

pathophysiology of neuroinflammatory disorders and myocardial infarction (MI) (Jiang, et al., 

1996;Krantz, et al., 2000;O'Kane, et al., 2006;Slominski, 2009).  

We propose that stimulation of hypothalamic mast cells by environment, neural, immune 

pathogenic (Lyme, mycotoxins) or stress triggers (CRH, somatostatin) activates microglia leading to 

focal inflammation and disturbed homeostasis (Figure 1). Mast cell and/or microglia triggers may 

derive from the nasal cavity, or may reach the brain area through a disrupted BBB or through the 

lymphatics. Stimulated mast cells could secrete molecules that can alter homeostasis directly (via 

secretion of CRH, urocortin) or activate microglia (via secretion of histamine, tryptase and mtDNA). 

Microglia then release more inflammatory molecules (IL-1β, IL-6, and CCL2) that further disrupt 

homeostasis, causes mitochondrial dysfunction and contribute to fatigue both centrally and 

peripherally. In fact, activated microglia have been reported to contribute to the pathophysiology of 
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sleep disorders (Nadjar, et al., 2017). The involvement of more than one trigger can lead to a 

significantly heightened response and lower the triggering threshold of both mast cells and microglia 

leading to chronic symptoms.  

Mast cells are unique tissue immune cells involved in allergic reactions (Theoharides, et al., 

2015d), but also act as sensors of environmental and psychological stress (Theoharides, 2017). Even 

though we invoke stimulation of mast cells in the hypothalamus, it does not necessarily mean that mast 

cells should necessarily be stimulated outside the CNS. Nevertheless, there have been reports of an 

association between ME/CFS and acute rhinitis including significantly higher TNF and CXCL8 levels 

in nasal lavage fluid (Repka-Ramirez, et al., 2002). In addition, chronic rhinosinusitis symptoms were 

significantly higher in patients with ME/CFS (Chester, 2003), apparently due to non-allergic rhinitis 

(Baraniuk and Ho, 2007). It is well known that both allergic and perennial rhinitis involve activation 

of mast cells (Bachert, et al., 2018). More recently, it was reported that the incidence of ME/CFS was 

higher in patients with a history of atopy (Yang, et al., 2015). Moreover, circulating blood mast cell 

precursors were found to be higher in ME/CFS patients (Nguyen, et al., 2017).     

Mast cells are located perivascularly in the hypothalamus, thalamus and third ventricle of the 

diencephalon (Edvinsson, et al., 1977), (Pang, et al., 1996). CRH could stimulate MC in the 

hypothalamus since CRHR-1 gene is expressed on human cultured mast cells, activation of which 

induces production of vascular endothelial growth factor (VEGF), (Cao, et al., 2005) which could 

increase permeability of the blood-brain barrier (BBB) (Theoharides and Konstantinidou, 2007), 

(Theoharides, 1990), (Esposito, et al., 2002) leading to inflammation of the brain (Theoharides, et al., 

2004a). Moreover, CRH is synthesized by mast cells (Kempuraj, et al., 2004) implying it could have 

autocrine effects. Interestingly, even somatostatin stimulates mast cells (Theoharides, et al., 1990). 

Mast cells are also found in the pineal, the pituitary and the thyroid glands (Theoharides, 2017) further 

extending their contribution to the symptoms of ME/CFS such as sleep disturbances dysfunctional 

HPA axis and fatigue due to thyroid dysfunction. Mast cells are well-known for their role in allergic 
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reactions, (Beaven, 2009) but mast cells are now considered important in innate and acquired 

immunity, (Galli, et al., 2008) antigen presentation, (Gong, et al., 2010) and inflammation 

(Theoharides, et al., 2010a).  

Mast cells can be stimulated by neurons, hormones, environmental, neuroimmune, pathogenic 

and stress triggers. (Table 3), (Theoharides, et al., 2015d), (Theoharides, 2017). Reactive oxygen 

species (ROS) can also stimulate mast cells (Swindle and Metcalfe, 2007). (Robuffo, et al., 2017), 

(Toniato, et al., 2017) Mast cells also secrete leptin that could contribute to cachexia and fatigue 

(Taildeman, et al., 2009). Mast cells secrete as many as 100 different mediators (Table 4) (Mukai, et 

al., 2018), (Theoharides and Kalogeromitros, 2006) (Wernersson and Pejler, 2014) often selectively 

without degranulation (Theoharides, et al., 2007), utilizing different secretory pathways (Xu, et al., 

2018). Mast cells can also secrete danger signals, (Theoharides, 2016), including many chemokines 

and cytokines (Conti, et al., 2017),(Mukai, et al., 2018) especially mitochondrial DNA (mtDNA), 

(Zhang, et al., 2012) which could act as an “innate pathogen” (Zhang, et al., 2011) leading to a localized 

brain auto-inflammatory response (Collins, et al., 2004;Marques, et al., 2012;Sun, et al., 

2013;Theoharides, et al., 2013). Extracellular mtDNA could either be secreted directly in the 

diencephalon or could reach the brain through lymphatics (Louveau, et al., 2015). We had reported 

that mtDNA is increased in the serum of children with autism spectrum disorder (ASD) (Zhang B, et 

al., 2010). Mast cell-derived mediators can then stimulate microglia (Zhang, et al., 2016), (Patel, et al., 

2016) to secrete additional pro-inflammatory and homeostasis-disrupting molecules (Table 5) 

contributing to fatigue and neuropsychiatric symptoms (Theoharides TC., et al., 2016).  It is interesting 

that peptide Y was found to be elevated in plasma of patients with ME/CFS and correlated significantly 

with stress (Fletcher, et al., 2010), as this peptide is known to stimulate mast cells (Mousli and Landry, 

1994). 

An important part is that combination of triggers is likely to play a more important pathogenetic 

role than individual ones. For instance, we reported that combination of CRH and NT have synergistic 
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action in stimulating VEGF secretion without tryptase from human mast cells (Donelan, et al., 2006), 

as well as induce the expression of each other’s receptors on human mast cells (Alysandratos, et al., 

2012). More recently, we showed that the combination of SP and IL-33 has synergistic action in 

stimulating TNF secretion without tryptase from human cultured mast cells (Taracanova, et al., 2017c).   

CRH is often released together with another peptide, neurotensin (NT), which is vasoactive 

(Leeman and Carraway, 1982) and has also been implicated in inflammation (Mustain, et al., 2011) 

and neurological diseases (Caceda, et al., 2006). NT is increased in the skin following acute stress 

(Theoharides, et al., 1998) and increases vascular permeability, an effect  synergistic with CRH 

(Crompton, et al., 2003), (Donelan, et al., 2006).  

Mast cells are also stimulated by the peptide Substance P (SP), (Church, et al., 

1991;Theoharides, et al., 2010d;Taracanova, et al., 2017a) initially characterized by Leeman and 

colleagues, (Chang and Leeman, 1970;Carraway and Leeman, 1973) and shown to participate in 

inflammatory processes (Mashaghi, et al., 2016;O'Connor, et al., 2004;Hokfelt, et al., 2001;Douglas 

and Leeman, 2011). IL-33 is a member of the IL-1 family of cytokines and has emerged as an early 

warning sign (dubbed “alarmin”) (Moulin, et al., 2007) in autoimmune or inflammatory process 

(Saluja, et al., 2015;Theoharides, et al., 2015a;Theoharides, 2016). IL-33 is secreted by fibroblasts and 

endothelial cells, (Liew, et al., 2010) but also from mast cells. (Tung, et al., 2014) IL-33 augments the 

effect of IgE on secretion of histamine from mast cells and basophils (Moulin, et al., 2007), (Silver, et 

al., 2010), but the effect of IL-33 when used by itself or in combination with SP on secretion of IL-1β 

from human mast cells has not been reported. Substance P stimulated secretion of VEGF, an action 

augmented by IL-33 (Theoharides, et al., 2010e). 

We recently showed that stimulation of human mast cells by SP given together with IL-33 markedly 

increases secretion and gene expression of the pro-inflammatory cytokine, TNF (Taracanova, et al., 

2017b). Interestingly, chronic rhinosinusitis, which is quite common in patients with ME/CFS as 
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discussed earlier, has been associated with high levels of nasal IL-33 (Ozturan, et al., 2017), which 

could reach the hypothalamus through the cribriform plexus. 

 

Does any treatment modality work? 

There are currently no FDA approved drugs for the treatment of ME/CFS and the available 

psychological, physical and pharmacological interventions do not appear to be effective (Bains, 

2008;Pae, et al., 2009;Morris and Maes, 2014;Loades, et al., 2016;Collatz, et al., 2016;Castro-Marrero, 

et al., 2017;Brigden, et al., 2017). Mitochondria appear as one appealing drug target for the treatment 

of ME/CFS, but other papers reported no apparent alteration in ATP production (Shungu, et al., 

2012b). Chemokines and cytokines have been proposed as targets for neuroinflammatory disorders 

(Pranzatelli, 2018), but such have not been tried in ME/CFS 

. 

The peroxisome proliferator-activated receptor (PPAR) agonist bezafibrate improves 

mitochondrial function by stimulating mitochondrial biogenesis and increasing the oxidative 

phosphorylation efficiency in a number of studies (Valero, 2014;Wang, et al., 2010;Johri, et al., 2012). 

It has also been suggested that, since fatigue is associated with hypotension in ME/CFS patients, 

increasing blood pressure might present an effective therapeutic approach to this symptom. Even 

though previous studies using the mineralcorticoid fludrocortisone failed to show any improvement 

(Peterson, et al., 1998), (Rowe, et al., 2016), use of the agonist midodrine to increase blood pressure 

has produced some improvement of the fatigue (Naschitz, et al., 2004). Interestingly, angiotensin II 

inhibitors have been shown to increase mitochondrial membrane potential, to improve mitochondrial 

function and to stimulate mitochondrial biogenesis (Morris and Maes, 2014), (de Cavanagh, et al., 

2011). Indeed, blockade of angiotensin II has been shown to prevent the onset of T2DM in mice by 

increasing fat oxidation, decreasing muscle triglycerides and improving glucose tolerance (Mitsuishi, 

et al., 2009). The angiotensin receptor blocker telmisartan improves mitochondrial dysfunction by 
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enhancing mitochondrial biogenesis and protecting vascular and endothelial cell damage (Takeuchi, 

et al., 2013), (Kurokawa, et al., 2015). Similarly, the angiotensin receptor blocker losartan has been 

shown to improve mitochondrial respiratory chain function and coenzyme Q10 (CoQ10) content in 

hypertensive animals (Sumbalova, et al., 2010).  However, given the blood pressure lowering effects 

of these agents it is unlikely they will be useful in ME/CFS, except maybe in select patients. 

 Several natural compounds may have a beneficial effect on mitochondrial function. 

Magnesium ions play critical roles in energy metabolism and in maintaining normal muscle function, 

by being positively active regulator of glycolysis and of all enzymatic reactions involving phosphate 

group transfer from ATP (Dominguez, et al., 2006), (Morris and Maes, 2014). Several studies have 

demonstrated that magnesium ion supplements significantly increase muscle strength and maintain 

optimal physical activity performance in humans (Brilla and Haley, 1992), (Newhouse and Finstad, 

2000), (Kass and Poeira, 2015), (Zhang, et al., 2017). In experimental animals, this improvement in 

exercise performance seems to occur via enhancing glucose availability in the brain and muscle, and 

via reducing/delaying lactate accumulation (Zhang, et al., 2017). Magnesium sulphate may also 

improve mitochondrial respiratory function and prevent nitrous oxide production in the brain (Xu, et 

al., 2002), (Yang X, et al., 2007).  

Coenzyme Q10 deficiency has been reported in patients with ME/CFS (Maes, et al., 2009), 

(Maes, et al., 2012), (Filler, et al., 2014). However, administration of CoQ10 to patients with ME/CFS 

have failed to show any benefit (Campagnolo, et al., 2017).   

Naturally occurring flavonoids have potent anti-oxidant, anti-inflammatory and 

neuroprotective actions (Guo, et al., 2009;Middleton, et al., 2000;Xiao, et al., 2011) and are generally 

considered safe (Harwood, et al., 2007;Kawanishi, et al., 2005;Theoharides, et al., 2014;Theoharides, 

et al., 2014). The flavonoid genistein, attenuates muscle fatigue in humans by down-regulating 

oxidative stress and enhancing anti-oxidant enzyme activity (Ding and Liu, 2011). The flavonoids 

epigallocatechin, naringin and curcumin can ameliorate ME/CFS symptoms in experimental models 
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(Sachdeva, et al., 2009), (Vij, et al., 2009), (Gupta, et al., 2009), (Sachdeva, et al., 2011). Other reports 

have documented similar chronic fatigue attenuating effects for the Astragalus flavonoids (Kuo, et al., 

2009) and of olive extract (Gupta, et al., 2010). The isoflavones genistein and daidzein, have been 

shown to reverse the effects of polyinosinic:polycytidylic acid (poly(I:C) on mouse locomotor activity 

and brain inflammatory mediator expression in a mouse model of fatigue (Vasiadi, et al., 2014). 

Quercetin appears to increase exercise tolerance by attenuating oxidative stress in mouse brain, while 

at the same time conferring anti-oxidant and anti-inflammatory action (Kempuraj, et al., 2005), (Davis, 

et al., 2009), (Ishisaka, et al., 2011).  

Luteolin suppresses adipocyte activation of macrophages and inflammation (Deqiu, et al., 

2011;Ando, et al., 2009), while it increases insulin sensitivity of the endothelium (Deqiu, et al., 2011). 

Luteolin also inhibits mast cells (Asadi, et al., 2010;Weng, et al., 2015;Patel and Theoharides, 2017) 

and microglia (Jang, et al., 2008),(Patel, et al., 2016). In this context, it is interesting that luteolin 

improved symptoms of both ASD (Taliou, et al., 2013), (Tsilioni, et al., 2015), post-Lyme syndrome 

(Theoharides and Stewart, 2016) and brain fog (Theoharides, et al., 2015b) in open-label trials. We 

recently showed that tetramethoxyluteolin is more potent than luteolin in its ability to inhibit human 

cultured microglia (Patel, et al., 2016) and mast cells (Patel and Theoharides, 2017). Intranasal 

administration of select flavonoids may reduce inflammation in the hypothalamus and correct the 

central pathogenesis of ME/CFS. Novel treatment approaches are required to address the central 

pathogenic processes. For instance, intranasal administration of microvesicle-entrapped curcumin was 

shown to inhibit inflammation of the brain in a mouse model (Sun, et al., 2010).   

   

Conclusions 

Overall, the ME/CFS phenotype has been associated with apparent abnormalities in the metabolic 

profile, possibly due to local inflammation in the hypothalamus. Compounds that could inhibit 
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inflammation in the brain, such as tetramethoxyluteolin or the anti-inflammatory cytokine IL-37 

(Dinarello, et al., 2016), (Mastrangelo, et al., 2018), may be potential treatment options. 
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FOOTNOTES 
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Legend to Figure 1. 

Diagrammatic representation of the proposed mast cell-microglia interactions in the 

hypothalamus, contribute to the pathogenesis of ME/CFS, and could serve as targets for 

treatment. 

Hypothalamic mast cells are stimulated by stress-associated triggers such as CRH, HK-1 and SP along 

with mtDNA and IL-33, some derived from nasal cavity, while others may reach the area through a 

disrupted blood-brain barrier or through lymphatics. Stimulated mast cells then secrete molecules such 

as CXCL8, NT, TNF, tryptase and mtDNA, (CXCL) which activate microglia to secrete more 

inflammatory molecules especially, IL-1β, IL-6, and CXCL8 that further disrupt homeostasis, causes 

mitochondrial dysfunction and contribute to symptoms of ME/CFS.  Luteolin could inhibit these 

processes at different steps as shown. 
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Table 1. Conditions Often Comorbid with ME/CFS 

________________________________________________________________________ 
• Chronic inflammatory response syndrome (CIRS) 

• Fibromyalgia syndrome (FMS) 

• Ehlers-Danlos Syndrome (EDS)  

• Gulf War Illness (GWI)  

• Interstitial cystitis/bladder pain syndrome (IC/BPS)  

• Irritable bowel syndrome (IBS)  

• Mast cell activation syndrome (MCAS) 

• Multiple chemical sensitivity syndrome (MCSS) 

• Post-Lyme syndrome 

• Postural orthostatic tachycardia syndrome (POTS) 

• Post-traumatic stress disorder (PTSD)  

• Restless leg syndrome  

_______________________________________________________________________ 
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Table 2. Dysregulated Molecules that May Contribute to the Pathogenesis of ME/CFS 
_______________________________________________________________________ 
 

• Cachexins 
• Calcineurin 
• Heavy metals 
• Herbicides 
• Inflammatory cytokines 
• Leptin 
• Melatonin 
• miRNAs 
• Mitochondrial enzymes 
• Neuroendocrine disruptors  
• Neuropeptides 
• Neurotransmitters 
• Reactive Oxygen Species  
• Toxins (mycotoxins, Borrelia toxins) 
• Uncoupling protein 2   
• Xenobiotics 

_______________________________________________________________________ 
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Table 3. Mast Cell Triggers 
 

 
 
 
 
 
_  
__  

___________________________________________________________________ 
 
 
  

Stimulating degranulation 
 
Acetylcholine 
Adenosine 
Complement fragments  
- C3α, C4α, C5α 

Drugs 
- Local anesthetics, lactam antibiotics, neuromuscular junction blockers, vancomycin 

Eosinophil granule proteins 
IgE 
IgG1 
IgG4 
Lysophosphatidylserine 
Histamine 
Serotonin 
Lysophosphatidic acid 
Peptides 
- Adrenomedullin, CGRP, Endorphin, Endothelin, Hemokinin-1, Leptin, Mastoparan, 

Neurotensin, NGF, PTH, Somatostatin, SP, Thrombin, VIP 
Tryptase 
 
Stimulating selective release of mediators without degranulation 
 

ATP 
Borrelia burgdorferi (Lyme Disease) 
CRH 
Heavy metals 

- Aluminum, cadmium, mercury 
Herbicides 

- Atrazine, glyphosate 
IL-33 
Mycotoxins 
LPS 
SCF 
Viruses 
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Table 4. Mast Cell Mediators  
Mediators Pathophysiologic effect   
 
Prestored 

Biogenic Amines 

 Dopamine Neurotransmission 

 Histamine Vasodilation, angiogenesis, mitogenesis, pain 

 5-Hydroxytryptamine (5-HT, serotonin) Vasoconstriction, pain 

Polyamines 

 Spermidine, spermine Secretory granule stability, inhibition of secretion 

Chemokines 

IL-8 (CXCL8), MCP-1 (CCL2), MCP-3 (CCL7),                Chemoattraction and tissue infiltration of leukocytes 

MCP-4, RANTES (CCL5), Eotaxin (CCL11) 

Cytokines 

 IL-4, IL-5, IL-6, IL-15, IL-17,  IL-31, IL-33, TNF Immune cell maturation, inflammation 

Enzymes 

Arylsulfatases A Lipid/proteoglycan hydrolysis 

Beta-hexosaminidase Degradation processes 

Beta-glucuronidase Degradation processes 

Beta-glucosaminidase Degradation processes 

Beta-D-galactosidase Degradation processes 

Carboxypeptidase A Peptide processing 

Cathepsins B,C, D, E, L Degradation processes 

 Chymase Tissue damage, pain, angiotensin II synthesis 

 Grnzyme B Inflammation and pre-apoptotic effects 

 Kinogenases Synthesis of vasodilatory kinins, pain 

 Phospholipases Arachidonic acid generation 

 Renin Angiotensin II generation 

 Tryptase Tissue damage, activation of PAR, inflammation, pain 

        Metalloproteinases Tissue damage, modification of cytokines/chemokines 

 (CPA3, MMP9, ADAMTSS) 

Growth factors 

 b-FGF Neovascularization 

  NGF Nerve growth, mast cell activation 

 SCF Mast cell growth and activation 

 TGFβ Anti-inflammatory, pro-fibrotic 

VEGF Neovascularization, vasodilation 

 

Peptides  

 ACTH 

 Angiogenin Neovascularization 
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Angiopoietin Neovascularization 

Corticotropin-releasing hormone  Inflammation, mast cell stimulus, vasodilation 

Endorphins Analgesia 

Endothelin Sepsis 

Hemokinin-1 Inflammation, mast cell stimulus, pain, vasodilation 

 Kinins (bradykinin) Inflammation, mast cell stimulus, pain, vasodilation 

Leptin Food intake regulator 

Meltonin Biologic clock regulator 

Neurotensin Inflammation, mast cell stimulus, vasodilation             

RANKL Osteoclast differentiation and activation  

Somatostatin  Mast cell stimulant, anti-secretory 

 Substance P  Inflammation, mast cell stimulus, pain 

Urocortin Inflammation, vasodilation 

Vasoactive intestinal peptide  Vasodilation, mast cell activation 

Proteoglycans 

Chondroitin sulfate Cartilage synthesis, anti-inflammatory 

Heparin Angiogenesis, nerve growth factor stabilization 

Hyaluronic acid Connective tissue, nerve growth factor stabilization 

Serglycin Storage of granule proteases 

 

De novo synthesized 

Chemokines 

 CCL2, CXCL8, MIP-1α, MCP-1 

Cytokines 

Interleukins (IL)-1,2,3,4,5,6,8,9,10,13,16,18 Inflammation, leukocyte migration, pain 

 IFN-α, IFN- β, IFN-γ; MIF; TGFβ; TNF, Inflammation, leukocyte proliferation/activation 

         

Growth Factors 

SCF, β-FGF, neurotrophin 3, NGF, Growth of a variety of cells 

PDGF, TGFβ, VEGF  

Nitric oxide Vasodilation 

Phospholipid metabolites 
 Leukotriene B4  Leukocyte chemotaxis   

 Leukotriene C4  Vasoconstriction, pain 

 Platelet activating factor  Platelet activation, vasodilation  

 Prostaglandin D2  Bronchonstriction, pain 

 
 
  
 
 
_______________________________________________________________________ 
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Table 5. Microglia Mediators 

_____________________________________________________________________ 
 
Cytokines 

• IL-1β 
• IL-6 
• TNF 

 
Chemokines 

• CCL2 
• CXCL8 (IL-8) 
• CCL5 (MCP-1) 

_____________________________________________________________________ 
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Figure 1.  
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