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Pyrroloquinoline-quinine (PQQ) was initially characterized as a redox cofactor for membrane-bound dehydrogenases
in the bacterial system. Subsequently, PQQ was shown to be an antioxidant protecting the living cells from oxidative
damage in vivo and the biomolecules from artificially produced reaction oxygen species in vitro. The presence of PQQ
has been documented from different biological samples. It functions as a nutrient and vitamin for supporting the
growth and protection of living cells under stress. Recently, the role of PQQ has also been shown as a bio-control
agent for plant fungal pathogens, an inducer for proteins kinases involved in cellular differentiation of mammalian
cells and as a redox sensor leading to development of biosensor. Recent reviews published on PQQ and enzymes
requiring this cofactor have brought forth the case specific roles of PQQ. This review covers the comprehensive
information on various aspects of PQQ known till date. These include the roles of PQQ in the regulation of cellular
growth and differentiation in mammalian system, as a nutrient and vitamin in stress tolerance, in crop productivity
through increasing the availability of insoluble phosphate and as a bio-control agent, and as a redox agent leading to
the biosensor development. Most recent findings correlating the exceptionally high redox recycling ability of PQQ to
its potential as anti-neurodegenerative, anticancer and pharmacological agents, and as a signalling molecule have been
distinctly brought out. This review discusses different findings suggesting the versatility in PQQ functions and
provides the most plausible intellectual basis to the ubiquitous roles of this compound in a large number of biological
processes, as a nutrient and a perspective vitamin.
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1. Occurrence of PQQ in nature

Pyrroloquinoline-quinone (PQQ) was first identified in
methylotrophic bacteria (Salisbury et al. 1979; Westerling
et al. 1979) as a coenzyme for methanol dehydrogenase in
1979, and named as methoxatin. PQQ covalently interacts
with different enzymes (McIntire 1994) and the proteins
interacting with PQQ were originally termed as quinopro-
teins. Subsequently, it is found that topaquinone (TQ) and
tryptophan tryptophenylquinone (TTQ) also act as coen-
zymes for many proteins. The proteins interacting with these
quinones including PQQ and regulating their functions were
also included in the category of quinoproteins. Although the
majority of these proteins were bacterial dehydrogenases, a
large number of other enzymes have also been found to

require PQQ as a cofactor. Most notable ones are amine
oxidase/dehydrogenase (McIntire 1994), Ser/Thr protein
kinases from Escherichia coli (Khairnar et al. 2007), and
Deinococcus radiodurans (Rajpurohit and Misra 2010),
2-aminoadipic 6-semialdehyde dehydrogenase from mam-
malian system and a signalling protein having AMP-
binding and phosphopantetheine-binding domains and six
PQQ-binding motifs (Wang et al. 2005). PQQ has been
detected in a wide variety of foods and other sources
(Kumazava et al. 1995; Mitchell et al. 1999). Quantitative
analyses of PQQ by LC/MS/MS showed that free PQQ was
present in almost all food samples, in the range of 0.19–
7.02 ng per gm fresh weight (for solid foods) and per mL in
liquid foods (Noji et al. 2007). Although, PQQ plays impor-
tant roles in the growth and development of all organisms
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studied so far, its synthesis in higher organisms has not been
shown. The major source of PQQ in these organisms is
believed to be microbial sources. The amount of PQQ ex-
creted from different microorganisms varies from 1 tg to
1 mg/mL, and is influenced by the composition of the
growth medium (Duine 1991; Urakami et al. 1992).

The biochemical pathway of PQQ synthesis has been
traced in Methylobacterium extorquens AM1 grown in me-
dium supplemented with [4C] tyrosine (Smidt et al. 1991;
Junkefer et al. 1995). Genetics of PQQ synthesis has been
studied in many bacteria including Acinetobacter calcoaceti-
cus (Goosen et al. 1989), Enterobacter intermedium 60-2G
(Kim et al. 2003), Gluconobacter oxydans (Hölscher and
Görisch 2006), Klebsiella pneumoniae (Meulenberg et al.
1992), M. extorquens AM1 (Toyama et al. 1997) and
Pseudomonas fluorescens CHA0 (Schnider et al. 1995).
The number of genes involved in the synthesis of PQQ
ranges from 4 in A. calcoaceticus to 6–7 genes in methylo-
trophs and G. oxidans. The majority of the bacteria making
PQQ contain 6 or 7 genes (pqqABCDEF/G) in an operon.
PQQ biosynthesis involves several enzymes encoded by
these genes including pqqE that encodes a regulatory
enzyme named as PQQ synthase (Goldstein et al. 2003).
The pqqA encodes a small peptide of generally 24 amino
acids bearing tyrosine and glutamate, which get fused and
form a precursor for subsequent transformations into PQQ
(Goosen et al. 1992). This molecule remains attached with a
precursor peptide and is cleaved off at a later step in the
biosynthetic process by other enzymes of the pathway.
Although the pqqA gene product is redundant for the syn-
thesis of PQQ in some of the bacteria, its availability seems
to be a rate-determining step in PQQ biosynthesis.

Escherichia coli is deficient in PQQ synthase and, there-
fore, has been used as a host for cloning the PQQ synthase
gene from Ervinia harbicola (Liu et al. 1992), Pseudomonas
cepasia (Babu-Khan et al. 1995), Rahnella aquatilis (Kim
et al. 1998), E. intermedium (Kim et al. 2003; Rodriguez and
Fraga 1999) and D. radiodurans (Khairnar et al. 2003).
Transgenic E. coli producing PQQ could solubilize insoluble
rock phosphates into inorganic phosphorous (figure 1).
Several DNA fragments have been identified from different
bacteria that help in the synthesis of PQQ in E. coli and
apparently share little or no sequence homology with the
known PQQ synthase genes. This suggests the diversity in
metabolic pathways associated with the synthesis of PQQ in
different microorganisms. Since E. coli has been used for
cloning of PQQ synthase genes from different bacteria using
functional complementation of mineral phosphate solubili-
zation (MPS) activity, the entire PQQ synthesis operon from
G. oxidans has been expressed in E. coli and synthesis of
PQQ has been demonstrated (Yang et al. 2010). Recently,
the roles of PQQ have been shown in several other physio-
logical processes. Readers are suggested to refer to the recent

reviews published recently either on the enzymes requiring
PQQ as a cofactor and/or on the specific role of this mole-
cule (Willner et al. 2007; Hölscher et al. 2009; Rucker et al.
2009; Fetzner and Steiner 2010; Yakushi and Matsushita
2010). Here we reviewe the important findings that suggest
the different roles of PQQ in the diversified cellular and
molecular processes.

2. PQQ role in crop productivity

2.1 Through phosphate solubilization

Microbial biodiversity in soil plays a significant role in
metabolism of complex molecules and production of anti-
biotics, secondary metabolites and other useful ingredients
that contribtute to crop productivity. Photoautotrophic
growth of plants, algae and photosynthetic bacteria requires
several micro- and macronutrients. The availability of nitro-
gen and phosphorous as macronutrients is important for the
growth of crop plants and agricultural productivity. These
macronutrients are applied to the field in form of both easily
digestible and bio-transformable chemical fertilizers. Efficient
and environmentally regulated microbial processes help in

Figure 1. Functional complementation of mineral phosphate sol-
ubilization phenotype in transgenic Escherichia coli. The PQQ
synthase of D. radiodurans was expressed in E. coli. Transgenic
cells producing PQQ was compared with wild-type cells harbouring
plasmid vector for release of inorganic phosphate from different
samples containing insoluble phosphates such as tricalcium phos-
phates (TCP), and mineral rocks collected from Hirapur (H-Rock),
Mussoorie (M-Rock) and Jhamarkatra (J-Rock) mines of India.
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recycling of both these important macronutrients in nature
(Rudolf and Kroneck 2005; Bhattacharjee et al. 2008;
Cheng 2008). Molecular nitrogen is fixed to inorganic nitro-
gen through the highly regulated pathways in diazoptrophic
bacteria, which then gets utilized in the synthesis of organic
molecules through cellular nitrogen and carbon metabolism.
Phosphorus the second most important macronutrient and
can readily form the insoluble salts with different metal ions,
rendering phosphorous easy availability for growth of the
plants. Microbes present in the soil employ different strate-
gies to make the unavailable forms of phosphates to the most
readily useable form of phosphorous for plants. Like nitro-
gen fixation, the phosphate availability in soil has also been
increased by improved microbial metabolism.

Several gram-negative bacteria are capable of producing
organic acids by direct oxidation of aldehydes, which then
get diffused in surroundings and help in the acidification of
poorly soluble mineral phosphates (Goldstein 1986; Sashidhar
and Podile 2010). Glucose dehydrogenase (GDH) requires
PQQ as a redox cofactor for direct oxidation of glucose to
gluconic acid, which then diffuses in the soundings of bac-
terial niche and helps in acidic solubilization of insoluble
phosphates in soil. Both membrane-bound and soluble forms
of GDH, in spite of having different substrate specificity, use
PQQ as a cofactor. The role of PQQ as a redox coenzyme
has been reported for several dehydrogenases, including
methanol dehydrogenase, ethanol dehydrogenase and GDH
(encoded by gdh) (Duine 1999; Matsushita et al. 2002; Stites
et al. 2000). There are plant growth-promoting bacteria that
use GDH-PQQ holoenzyme for solubilization of both inor-
ganic and /or organic phosphates in soil (Han et al. 2008; Liu
et al. 1992). In addition, the transformation of two rhizobac-
terial strains, Burkholderia cepacia IS-16 and a
Pseudomonas sp. strain, with gene(s) encoding the enzymes
of PQQ biosynthetic pathway, could enhance the MPS phe-
notype of these bacteria. Azotobacter, a free-living nitrogen
fixer, known to increase the fertility of the soil, was engi-
neered for PQQ synthesis, which could broaden its biofertil-
izer potential in crop producitivty (Sashidhar and Podile
2010). These studies suggest that microbes producing PQQ
can increase the phosphate availability in soil for the growth and
development of crop plants, which in turn increase crop pro-
ductivity. The possibility of PQQ enhancing the growth of the
crop plants also by the mechanisms that are beyond phosphate
solubilization cannot be ruled out.

2.2 As a bio-control agent and plant growth
promoting factor

The gram-negative bacterium R. aquatilis is ubiquitous and
is characterized by its beneficial metabolism leading to min-
eral phosphate solubilization, antimicrobial activity, nitrogen
fixation and plant disease suppression (Calvo et al. 2007).

This bacterium produces PQQ and its MPS phenotype is
contributed by mechanisms similar to other phosphate solu-
bilizing microbes. The R. aquatilis HX2 has been used as a
biocontrol agent for grapevine crown gall caused by
Agrobacterium vitis. PQQ minus cells of this bacterium
become ineffective in its bio-control activity. Expression of
complete operon of PQQ synthesis restored the bio-control
potential of this organism in vivo, suggesting the possible
role of PQQ in controlling the host pathogen interaction
(Guo et al. 2009). Several reports suggest that the GDH-
PQQ holoenzyme is involved in production of antimicrobial
substance in P. fluorescens (James and Gutterson 1986;
Schnider et al. 1995; de Werra et al. 2009) and E. interme-
dium 60-2G (Han et al. 2008). E. intermedium 60-2G, a
phosphate-solubilizing bacterium, has the ability to in-
duce systemic resistance in plants against soft rot path-
ogen Erwinia carotovora and the mutation in pqqA and
pqqB genes make these mutants lose their bio-control ability
(figure 2). Interestingly, both pqqA and pqqB mutants of
E. intermedium lost their bio-control ability for rice pathogen
Magnaporthe grisea KI-409 and their ability to enhance the
systemic resistance to the infection of fungal pathogens,
suggesting that PQQ contributes in MPS, antifungal activity
and in determination of induced systemic resistance of
E. intermedium (Han et al. 2008). It is widely believed that
PQQ promotes growth of both mammals and plants through

Figure 2. Role of PQQ in biocontrol of fungal infection in plants.
Inactivating pqqA gene generated the PQQ-deficient mutant of
Enterobacter intermedium 60-2G. The wild-type (WT) and PQQ
minus cells (pqqA−) alone, and mutant transformed with PqqA
expressing on plasmid (compl pqqA−) and plasmid vector control
(Con), were compared for fungal disease incidence in plants (cour-
tesy Professor YC Kim and colleagues; Han et al. 2008).
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its antioxidant and MPS roles, respectively. However, recent
studies on the role of PQQ in bio-control efficacy and as a
plant growth-promoting factor have grown beyond its anti-
oxidant and MPS roles. PQQ minus derivative of P. fluo-
rescens B16, a plant growth-promoting rhizobacterium, lost
its growth-promoting ability (Choi et al. 2008), which was
functionally complemented by overexpression of all the
proteins of the PQQ biosynthetic pathway in trans.
Application of wild-type P. fluorescens B16 on tomato
(Solanum lycopersicum) plants cultivated in a hydroponic
culture system significantly increased the height, flower
number, fruit number and total fruit weight, whereas none
of the PQQ minus strains did that in spite of having the
sufficient concentration of macronutrients including soluble
phosphates. Recently, a bacterial isolate CMG 860 contain-
ing complete PQQ synthesis genes was shown to have plant
growth promoting activity. The mutation in PQQ synthesis
genes resulted in loss of plant growth promoting activity of
CMG860 isolate (Ahmed and Shahab, 2010). Until recently,
the beneficial effects of PQQ were conveniently explained
on the basis of its antioxidant properties or ability to produce
organic acids. Recently, it has been shown that supplemen-
tation of 5 to 1000 nM synthetic PQQ in plants nutrients
could significantly increase the fresh weight of cucumber
(Cucumis sativus) seedlings (Choi et al. 2008) (figure 3),
confirming that PQQ is a plant growth-promoting factor by
yet-unexplored mechanisms. These findings indicated the
role of PQQ in crop productivity, which seems in addition
to its roles as an antioxidant and in the solubilization of
insoluble phosphates.

3. PQQ role in health sciences

3.1 In oxidative damage tolerance and redox control

Many naturally occurring quinones have been used as drugs
to protect cells against oxidative stress (Halliwell and
Gutteridge 1999) in vivo. These quinones react with reactive
oxygen species (ROS) and produce oxidation products,
which could form adduct with glutathione (GSH), resulting
in depletion of free GSH. This results in reduced oxidative
stress tolerance and, therefore, the oxidation of biomolecules
including proteins and manifestation of the oxidative killing
of cells (Boots et al. 2003, 2007). The molecular mecha-
nisms of quinone cytotoxicity have been extensively
reviewed (Bolton et al. 2000; Monks and Jones 2002).
Like other quinone-based antioxidants, PQQ also works in
concentration-dependent manner. Up to 10 μM, it works
predominantly as antioxidant, while beyond 50 μM it acts
as pro-oxidant. Both the antioxidant and pro-oxidant nature
of PQQ have functional significance in biology (He et al.
2003). Being highly electrophilic, this compound reacts with
many substances through its 5 positions. It forms stable

Figure 3. PQQ effect on growth in bacteria and plants. Plants
were grown in both minimal medium (MS) (A) and soil (sand) (B),
supplemented with different concentration of PQQ. The growth of
these plants were measured as height and compared with control
plants grown without PQQ (C) (courtesy Professor Ingyu Hwang
and colleagues; Choi et al. 2008). Transgenic E. coli producing
PQQ was compared with E. coli transformed with plasmid vector as
control and growth was measured as optical density at 600 nm (D).
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adducts with carbonyl reagents like hydrazine, phenylhydra-
zines, hydroxylamine, and semicarbazide, and the com-
plexes with acetone, aminoguanidine, urea, o-phenylene
diamine, sulfite and malononitrile. PQQ reacts with ammo-
nia and produces iminoquinone, which has a Kd of 41 mM,
and this adduct has pKa values of 9.1 and 11.86. These
characteristics provide PQQ the ability to oxidize the redox
modulatory site of N-methyl-D-aspartic acid (NMDA) recep-
tors, thus conferring protection against NMDA- or
glutamate-mediated cell injury in cultured neurons
(Aizenman et al. 1992). Recently, our findings have sug-
gested that PQQ has a role in selective killing of U937
human promonocytic cells largely by changing the intracel-
lular redox status (Shankar et al. 2010). PQQ induces apo-
ptosis in U937 cells, which increased 2- to 5-fold in the
presence of NAC or GSH, suggesting the possible role of
PQQ-mediated cytotoxicity beyond its redox regulation.
Depletion of cellular glutathione, on the other hand, ampli-
fied the cellular toxicity of PQQ by several folds and also
switched the mode of PQQ-induced cell death from apopto-
sis to necrosis (Shankar et al. 2010). This might indicate that
PQQ exerts necrotic cell death by its oxidative effect but
increased apoptosis in cells protected from oxidative stress,
which appears to be due to its effect beyond pro-oxidant.
The most promising potential application of PQQ has been
in neuroprotection, which could be implicated either the
functioning of PQQ as a redox control and response to
oxidative stress or as a signalling molecule helping in the
growth of neurons. These finding, nevertheless, suggested
that PQQ regulates redox status of the cells, it also regulate
the cellular response of cytotoxicity by cell signalling.

Involvement of PQQ in modulation of oxidative stress
response of living cells has been observed in both bacteria
and mammalian cells. This property of PQQ is of greater
significance in health science. The antioxidant nature has
been implicated in the several beneficial effects seen in
mammalian system fed with PQQ-supplemented diet. PQQ
has been known as an essential nutrient, which also protects
neurological cells by suppressing peroxynitrile formation
(Zhang and Rosenberg 2002) and blocks SIN-1-evoked
ATP depletion and nitration of bovine serum albumin by
scavenging superoxide radical. The SIN-1 and peroxynitrile
pathways of oxidative stress modulation have been correlat-
ed with oxidative-stress-induced signal transduction path-
way. Further, PQQ has been shown as a neuroprotectant. It
prevents the neurotoxin 6-hydroxydopamine (6-OHDA)-in-
duced cell death and DNA fragmentation in SH-SY5Y cells.
Since the 6-hydroxydopamine (6-OHDA) generates ROS,
the protection from the cytotoxic effect of 6-OHDA by
PQQ suggested that PQQ functions as ROS scavenger, es-
pecially superoxide (Hara et al. 2007). It has been shown
that E. coli cells producing PQQ could tolerate the mixed
ROS produced from the photodynamic effect of Rose Bengal

(5 μg/mL), several fold higher than the control (figure 4)
(Khairnar et al. 2003). These cells also showed ~4-fold
higher protection of proteins from γ-radiation-induced
DNA damage as compared with non-engineered cells. This
suggested a role of PQQ in protection of bacterial cells
against oxidative damage (Khairnar et al. 2003). PQQ could
also neutralize the artificially produced ROS such as super-
oxide, hydroxyl and oxygen free radicals and produces non-
reactive adducts with ROS in solution (Misra et al. 2004). In
an independent study, the phosphate-solubilizing bacteria
isolated from phosphate-deficient soils were checked for
oxidative stress tolerance. The bacteria producing PQQ
showed higher tolerance to hydrogen peroxide and γ radia-
tion effect (Shrivastava et al. 2010). This suggested that
PQQ controls the oxidative stress response of the cells by
acting as antioxidant/pro-oxidant; its role in stress response
regulation beyond these characteristics would be worth ap-
preciating. It is noteworthy that PQQ responses to oxidative
stress in prokaryotes and eukaryotes are widely different,
indicating the mechanistic difference of PQQ functions in
bacteria and higher organisms.

3.2 Clinical implications of PQQ

The effect of PQQ on induction of nerve cells was observed
in sciatic-nerve-deficit model created in rats (Liu et al.
2005). They observed that the PQQ-treated experimental
samples produced more mature and high-density regenerated
nerves cells, suggesting that PQQ is a potent enhancer for the
regeneration of peripheral nerves. The clinical uses of PQQ
have also been shown in stroke therapy using rats as model
system and demonstrated that PQQ alone could enhance
mitochondrial respiratory ratios in ischemic and non-
ischaemic myocardium (Zhu et al. 2006). PQQ showed
better protection of mitochondria from ischaemia/reperfu-
sion oxidative damage as compared with the most effective
drug metoprolol. PQQ has been demonstrated for its role in
modulation of mitochondrial quantity and function in mice
(Stites et al. 2006). They have shown that PQQ stimulates
mitochondrial complex 1 activity in vitro and counters the
effect of mitochondrial complex 1 inhibitor diphenylene
iodonium action in vivo. PQQ has been shown to play a role
as an antioxidant in neuronal cells and to prevent neuronal
cell death in a rodent stroke model. The levels of expression
and oxidation status of DJ-1, a causative gene product for a
familial form of Parkinson's disease, were also reduced in
primary cultured SHSY-5Y neurons cells when treated with
6-hydroxydopamine (6-OHDA) or H2O2 in the presence of
PQQ. Thus, the neuroprotective effects of PQQ on
oxidative-stress-induced neuronal death could be speculated
(Nunome et al. 2008). PQQ protection from methyl-mercury-
induced neurotoxicity in PC12 cells and NMDA-receptor-
mediated neurotoxicity to the spinal cord (Zhang et al. 2006;
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Zhang et al. 2009) and on neurotoxicity of aggregated beta-
amyloid (Abeta), a critical cause in the pathogenesis of
Alzheimer's disease (AD) (Hara et al. 2007), has been dem-
onstrated. A few notable effects of Abeta, such as the de-
crease in Bax/Bcl-2 ratio, and suppression of caspase-3
cleavage, were markedly reversed by PQQ. The effect of
PQQ on the amyloid formation and inhibition of cytotoxicity
of truncated alpha-synuclein provided the possible mecha-
nism of PQQ action in protection of neuronal cells from
Abeta toxicity. It has been shown that the aggregation and
cytotoxicity of C-truncated alpha-synuclein 119 and alpha-
synuclein 133, which have been found in both the normal
and the pathogenic brains, were inhibited by PQQ. PQQ
dramatically inhibits the fibril formation of C-terminal trun-
cated alpha-synuclein 110, 119 and 133 as well as the
mixtures of full-length alpha-synuclein with these truncated
variants and thereby decreases the cytotoxicity of truncated
alpha-synuclein (Kim et al. 2010a, b). They showed that
PQQ at 10 mg/kg infused at the initiation, or 3 h after the
initiation of reversible middle cerebral artery occlusion
(rMCAo), was effective in reducing cerebral infarct volumes
measured 72 h later. These results indicated that PQQ could
protect neuronal cells against beta-amyloid-induced neuro-
toxicity. Although the mechanism of PQQ action in inhibi-
tion of fibril formation of C-terminal truncated alpha-
synuclein is not clear, these findings suggested the pharma-
cological usefulness of PQQ and opened a possibility of it
becoming a potent anti-neurodegenerative compound in the
treatment of neurodegenerative diseases.

4. PQQ roles in stress response and signal transduction

Recently it has been shown that PQQ could activate the Ras
signalling pathways in NIH3T3 mouse fibroblasts
(Kumazawa et al. 2007) and could induce the differential
phosphorylation of signalling proteins. On the one hand,
PQQ treatment causes quick activation of ERK and PKC-
epsilon and increases the phosphorylation of Rb and c-Jun.
On the other, its presence down-regulates the expression
levels of growth inhibitory molecules like IkappaB and
p27. PQQ also counteracts the effect of soluble NSF attach-
ment proteins (SNAP) and effect of growth inhibitors, and
activates Ras pathway kinases, which lead to a dynamic shift
in G0/G1 population to S and G2/M population. This sug-
gested the role of PQQ in cell proliferation through Ras-
mediated signalling pathways. Subsequently, the effect of
PQQ on Schwann cell growth and AKT signalling pathways
were evaluated (He et al. 2010). It was found that PQQ could
affect the morphology of Schwann cells and activates AKT,
indicating that the PI3K/Akt signalling pathway might be
involved in Schwann cells proliferation and may be regulat-
ed by PQQ. PQQ effects on activation of both signalling
protein kinases and oncogenic phosphoproteins, and the

Figure 4. Role of PQQ as an antioxidant and in oxidative stress
response in bacteria. The reactivity of PQQ with artificially pro-
duced hydroxyl (A) and superoxide (B) free radicals were com-
pared with known antioxidants like ascorbate and ‘Trolox’.
Escherichia coli making PQQ were checked for mixed reactive
oxygen species produced at different concentrations of Rose Bengal
(C) under constant light illumination.
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regulation of gene expression in the mammalian system,
have been documented (Rucker et al. 2009). Cellular differ-
entiation in the mammalian system and increased apoptosis
in U937 tumour cells (Shankar et al. 2010) are the other
examples controlled by different signalling processes where
PQQ effects have been observed. PQQ’s involvement as a
bio-control agent (Bashan and de-Bashan 2002; Han et al.
2008), a plant growth stimulation factor (Choi et al. 2008)
and in the nodulation efficiency of Sinorhizobium meliloti by
modulating the plant-bacterium interactions (Bernardelli
et al. 2008), are other examples in heterologous system,
which is associated with host pathogen response mecha-
nisms. Therefore, the involvement of PQQ in signal trans-
duction mechanisms in various biological processes is being
increasingly appreciated.

Database search of proteins containing PQQ binding motifs
showed that a large number of protein kinases from different
organisms have multiple PQQ-binding motifs (figure 5).
Among these, a nutritional stress responsive protein kinase
PknD of Mycobacterium also has multiple PQQ-binding
motifs (http://smart.embl-heidelberg.de/smart). In bacteria,
the role of PQQ as an inducer of a periplasmic protein kinase
that has a role in cell membrane biogenesis (Wu et al. 2005;
Charlson et al. 2006), invasiveness of pathogenic E. coli
(Rolhion et al. 2005) and DSB repair (Khairnar et al.

2007) have been reported in E. coli. Further, it has been
demonstrated that D. radiodurans, an extremely radiation-
resistant bacterium, lacking PQQ, loses its resistance to
various DNA damaging agents (Rajpurohit et al. 2008).
Here we noticed that cells lacking this cofactor had a different
phosphoprotein profile than wild-type cells. Subsequently, it
was found that bacterial proteins having multiple interacting
sites for PQQ and eukaryotic type Ser/Thr kinase domain
were stimulated by PQQ and had an important role in radia-
tion resistance and DSB repair (Rajpurohit and Misra 2010)
(figure 6). These findings are increasingly supportive of the
role of PQQ in signal transduction mechanisms both in
eukaryotes and prokaryotes.

5. Development of bioelectronics around PQQ

PQQ works as a redox cofactor for GDH for the direct
oxidation of glucose to gluconic acid. During this process,
PQQ develops a measurable redox potential, which has been
exploited in the development of biosensors for measuring the
glucose levels in solution. A PQQ-mediated glucose-
oxidation-based bio-fuel cell with electrochemically switch-
able and tunable power output has been developed with
certain modifications (Katz and Willner 2003; Katz

Figure 5. Distribution of PQQ binding proteins in different organisms. The consensus PQQ binding motifs deduced from quinoprotein
dehydrogenases (A) were BLAST-searched in different proteins sequences submitted to public databases. The numbers of proteins showing
PQQ binding motifs in different organisms are shown as underlined numbers. Three important bacterial species (E. coli, Deinococci and
Mycobacteria) also showed many proteins with PQQ binding motifs (B) ( http://smart.embl-heidelberg.de/smart).
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et al. 2005; Yuhashi et al. 2005). Incorporating nanotubes
into this technology has allowed an increase in the current
density of ethanol/air bio-fuel cell by up to 14.5-fold and an
increased power density by up to 18.0-fold. The use of PQQ
in direct oxidation of other compounds including lactate
(Treu and Minteer 2008) has widened its application in
development of biosensors and bio-fuel cells. Thiol-
modified multiwalled carbon nanotubes (MWCNT) were
developed with the coating of a layer of PQQ-GDH and
PQQ-LDH and used for detection of glucose and lactate
levels. This technology has been combined with a bilirubin
oxidase (BOD)-coupled MWCNT-modified electrode, and a
membrane-free bio-fuel cell with an open cell potential of
600 mV and a power density in the range of 23 μW/cm has
been made (Tanne et al. 2010) (figure 7).PQQ-dependent
soluble GDH-based carbon paste electrodes have been de-
veloped for glucose monitoring in oxygen-deficient media
and for testing yeast fermentation capacity in an oxygen-
independent manner (Kurtinaitienė et al. 2010). The en-
hancement of PQQ-dependent GDH activity by artificial
electron acceptors has been demonstrated (Kulys et al.
2010). Glucose oxidase was immobilized to the PQQ
cross-linked modified amphiphilic phospholipid polymer
(PMBN), which produces electrochemical oxidation of glu-
cose on the polymer electrode. This suggested the possibility
of PMBN use in enzyme electrode for bioelectronics (Yu
et al. 2010). Carbon nanomaterial supports have been
employed in conjunction with heme-containing PQQ-

dependent alcohol dehydrogenase (PQQ-ADH) and alde-
hyde dehydrogenase (PQQ-AldDH) enzymes. This functions
as oxidation catalysts for producing stable, high-surface-area

Figure 6. Different open reading frames in Deinococcus radio-
durans R1 (A) and Escherichia coli K-12 (B) containing multiple
PQQ binding motifs also in two well-characterized protein kinases
like DR2518 (Rajpurohit and Misra 2010) and YfgL (Khairnar
et al. 2007) ( http://smart.embl-heidelberg.de/smart).

Figure 7. PQQ use in the development of biosensor. The redox
characteristic of PQQ has been exploited for the development of
glucose-based biosensor. Schematic representation of the develop-
ment of membrane-free bio-fuel cell based on multiwalled carbon
nanotubes (MWCNT)-modified gold anode coupled with PQQ-
GDH (A) and performance testing of BOD and GDH bio-cell
potential and power generation (B). (Courtesy to Professor F Lisdat
and colleagues; Tanne et al. 2010).
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catalyst supports for the bioelectrocatalysis of ethanol in bio-
fuel cells (Willner et al. 2007; Treu et al. 2010). PQQ-
apoglucose dehydrogenase (apo-GDH), loaded into poly
(methyl methacrylate) (PMMA) nanospheres, when incubat-
ed in 40% acetonitrile, releases PQQ-GDH from the nano-
spheres and helps in glucose oxidation. The electron released
during redox reaction is captured by another redox dye
reagent, e.g. 2,6-dichloroindolphenol (DCPIP), and decreases
its absorption. This allows the loading of an excess apoen-
zyme, which increases the detection capability with the in-
crease in release of encapsulated PQQ from the surface-bound
nanospheres (Shen and Meyerhoff 2009). The findings
reviewed the use of PQQ in development of biosensor and
bio-fuel cells, strongly support the possible use of this com-
pound in the development of advanced bioelectronics system
with an advanced nanomaterial technologies. The possibility
of exploiting the redox nature of PQQ for development of
technology in biological hydrogen production might be
proposed.

6. PQQ roles in gene expression and protein functions

PQQ has been classified as an important nutrient (Killgore
et al. 1989) and its effects on growth and stress tolerance of
organisms have been studied by either supplementing diet
with PQQ or producing this chemical inside the cells, at least
in bacteria. The presence of PQQ even at pg/mL level in the
culture medium stimulated bacterial growth by reducing the
lag time, suggesting an important role of PQQ in the

initiation of cell division (Ameyama et al. 1988). Balb/c
mice fed chemically defined amino-acid-based diets supple-
mented with 6 μg PQQ per kg diet showed an improvement
in its reproductive performance, growth, modulation of indi-
ces of neonatal extracellular matrix production and matura-
tion in mice (Steinberg et al. 1994; Steinberg et al. 2003).
Molecular mechanisms underlying roles of PQQ in growth
and stress tolerance are partly known. The effect of PQQ has
been demonstrated on both proteins synthesis at transcription
level and post-translation regulation of protein functions by
phosphorylation. PQQ-mediated inhibition of melanin syn-
thesis in cultured melanoma cells was the first evidence that
showed the direct role of PQQ in gene expression (Sato and
Toriyama 2009). Here they showed that the tyrosinase and
TRP-2 genes expression was differentially regulated in the
presence of PQQ. Intraperitoneal administration of PQQ
represses the synthesis of inducible nitric oxide synthase
(iNOS) mRNA at the transcription level, in the injury site, and
thereby effectively promotes the functional recovery of SCI rats
(Hirakawa et al. 2009). Recently, PQQ effect on global gene
expression has been studied both in the mammalian system
and in bacteria. It is shown that the presence of exogenously
supplemented PQQ in feed influences the expression pattern
of several genes in rats (Tchaparian et al. 2010). It was
shown that PQQ deficiency affects the expression pattern
of 438 genes (P<0.01), which gets reversed when PQQ was
supplemented in the diet. The genes most affected were
responsible for cellular stress, mitochondriogenesis, cell sig-
nalling and MAP kinase pathways, and transport of metab-
olites. PQQ stimulates mitochondrial biogenesis through the

Figure 8. PQQ functions as a glance. Biochemical pathway of PQQ synthesis involves pqqABCDEF genes in bacteria. PQQ has roles in
various processes, for example, as an inducer of protein kinases from both eukaryotes (redox signalling) and prokaryotes (DNA damage),
bio-analytical devices (biosensor/ bio-fuel) solublization of insoluble phosphates (bio-fertilizer), crop productivity (bio-control and plant
growth promoter) and protection from oxidative stress (antioxidant) have been profusely demonstrated.
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activation of cAMP response element-binding protein
(CREB) and peroxisome proliferator-activated receptor-gamma
coactivator-1 alpha (PGC-1alpha) (Chowanadisai et al.
2010). Activation of the PGC-1 alpha pathway has been
suggested through the PQQ-mediated nuclear respiratory
factor activation (NRF-1 and NRF-2) and mRNA synthesis
of Tfam, TFB1M, and TFB2M proteins. PQQ stimulates
nerve growth factor (NGF) synthesis and secretion in
Schwann cells. PQQ inhibition of amyloid fibril formation
by inhibiting the synthesis of amyloid proteins, amyloid beta
and mouse prion proteins has been reported (Kim et al.
2010a, b). In bacteria, the effect of PQQ on activity of
enzymes has been known for a long time. PQQ is required
as a redox cofactor for the activity of several membrane as
well as soluble dehydrogeases in both prokaryotes and
eukaryotes. Recently, it has been shown that PQQ could
stimulate the activity of purified recombinant periplasmic
protein kinase in E. coli (Khairnar et al 2007) and recombi-
nant Ser/Thr protein kinase from D. radiodurans (Rajpurohit
and Misra 2010). Deinococcus cells lacking PQQ and PQQ-
stimulated eukaryotic type Ser/Thr protein kinase (STPK)
separately showed an increased synthesis of 75 transcripts,
while 200 genes were down-regulated by 1.5- to 15-fold (P≤
0.05). Some of the important proteins showing changes in
expression levels in these mutants were putative stress re-
sponse proteins, proteins involved in energy metabolism,
synthesis of biomolecules and DNA metabolism.
Transcriptome data of PQQ-deficient mutants of D. radio-
durans R1 have been submitted to Gene Expression
Omnibus database (accession numbers GSE17722,
GSM442538 and GSM442540). These findings clearly sug-
gest the role of PQQ at the activity modulation of various
enzymes and at the transcription level by still unknown
mechanisms.

7. Conclusion

PQQ has been shown to be a ubiquitous molecule that affects
numerous physiological and biochemical processes and has
proved to be beneficial for growth and stress tolerance in
both bacteria and higher organisms. Molecular mechanisms
underlying the versatile nature of PQQ might not be merely
accounted to its antioxidant property and/or to its role in
solubilizing insoluble phosphates for easy availability for the
growth of plants. Therefore, PQQ could be suggested as
having roles in a process that might be as ubiquitous as its
presence across the living system. One such mechanism
suggested could be a signal transduction where PQQ could
act as an inducer of protein kinases, which directly or indi-
rectly regulate the functions of numerous proteins and also
gene expression in response to both biotic and abiotic
stresses. Since several protein kinases, neuronal growth fac-
tors, eIF2alpha/beta, etc., from bacteria, plants, animals and

mammalian systems, contain PQQ-binding motifs and could
be stimulated by PQQ, it seems quite convincing that PQQ has
a role in different types of signalling mechanisms that regulate
various physiological and molecular processes (figure 8). The
redox recycling property of PQQ makes it a good candidate
for redox controlled signalling in living cells and also for the
development of bioelectronics for industrial applications.
Although, its pro-oxidant as well as antioxidant properties
has been exploited in health sciences, reducing its pro-
oxidant characteristics without compromising the anti-
oxidant and signalling properties would be a challenging
task but the most desired development the future may like
to witness. When that is achieved, this compound might act
as an efficient anti-neurodegenerative, anticancer, and phar-
macological agent. This review has brought forth the cogni-
zance of the recent research emphasizing the usefulness of
PQQ in agricultural, medical and industrial applications.
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