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SUMMARY
CD44 is an adhesion molecule expressed in cancer stem-like cells. Here, we show that a CD44 variant
(CD44v) interacts with xCT, a glutamate-cystine transporter, and controls the intracellular level of reduced
glutathione (GSH). Human gastrointestinal cancer cells with a high level of CD44 expression showed an
enhanced capacity for GSH synthesis and defense against reactive oxygen species (ROS). Ablation of
CD44 induced loss of xCT from the cell surface and suppressed tumor growth in a transgenic mouse model
of gastric cancer. It also induced activation of p38MAPK, a downstream target of ROS, and expression of the
gene for the cell cycle inhibitor p21CIP1/WAF1. These findings establish a function for CD44v in regulation of
ROS defense and tumor growth.
INTRODUCTION

CD44, a major adhesion molecule for the extracellular matrix,

has been implicated in a wide variety of physiological processes,

including leukocyte homing and activation, wound healing, and

cell migration, as well as in tumor cell invasion and metastasis

(Gunthert et al., 1991; Nagano and Saya, 2004; Ponta et al.,

2003). It exists in numerous isoforms generated through alter-

native mRNA splicing. Whereas the standard CD44 isoform
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et al., 2007). CSCs are malignant cell subsets in hierarchically

organized tumors; they are selectively capable of tumor initiation

and self-renewal and give rise to the bulk population of nontu-

morigenic cancer cells through differentiation. Furthermore, we

have recently shown that CD44v is heterogeneously expressed

in mouse gastric tumors, being highly abundant in proliferative

cells and slow-cycling stem-like cells, but not in cells harboring

mucin 5AC (MUC5AC) mRNA, a marker of gastric differentiation

(Ishimoto et al., 2010). These observations suggested that CD44

might play a role in tumor initiation and the maintenance of

cancer cells in addition to its more established functions in cell

adhesion and migration. However, function-based evidence to

support such a role for CD44 or its variant isoforms has been

lacking.

Oxidative stress occurs when production of reactive oxygen

species (ROS) exceeds the capacity of the cellular defense

system consisting of redox enzymes and other antioxidant mole-

cules. Like normal tissue stem cells, subsets of CSCs in some

tumors harbor only low levels of ROS and manifest enhanced

mechanisms for protection against ROS-mediated damage,

properties that may contribute to tumor resistance to chemo-

and radiotherapy (Diehn et al., 2009; Phillips et al., 2006).

Reduced glutathione (GSH) is a major cellular metabolite that

protects against oxidative and chemical injury and exhibits a

variety of other cytoprotective effects. High levels of GSH as

well as increased expression of antioxidant enzymes promote

cancer cell survival and resistance to anticancer agents (Tra-

chootham et al., 2009). System xc� is a cystine-glutamate

exchange transporter composed of a light-chain subunit (xCT,

SLC7A11) and a heavy-chain subunit (CD98hc, SLC3A2).

Expression of xCT at the cell surface is essential for the uptake

of cystine required for intracellular GSH synthesis and is, thus,

an important determinant of intracellular redox balance (Lo

et al., 2008). Cells deficient in xCT or depleted of GSH have

recently been found to exhibit p38MAPK activation even at low

levels of oxidative stress (Chen et al., 2009; Sato et al., 2005),

indicating that xCT-mediated cystine transport for GSH

synthesis plays a key role in prevention of such stress signaling.

Furthermore, xCT has been implicated in the proliferation and

multidrug resistance of several types of cancer cells (Chen

et al., 2009; Huang et al., 2005; Lo et al., 2008). We carried out

this study to determine the function and mechanism of CD44v

in controlling redox status in cancer cells through the regulation

of xCT-mediated cystine transport.

RESULTS

CD44 Expression Correlates with ROS Defense, and
CD44 Ablation Activates ROS-p38MAPK Signaling
in Gastrointestinal Cancer Cells
CD44 is a cell surface marker for CSCs in various tumors, and

CSCs manifest low intracellular levels of ROS and enhanced

protection against ROS-mediated damage (Diehn et al., 2009).

Therefore, we hypothesized that CD44 expression is functionally

related to ROS defense in cancer cells. To investigate this

hypothesis we examined five human gastrointestinal cancer

cell lines that differ in CD44 expression status: three gastric

cancer lines (MKN28, AGS, KATOIII); and two colorectal cancer

lines (HT29, HCT116). These cells were exposed to 0.5 mM
388 Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc.
hydrogen peroxide (H2O2) as an oxidative stressor for 20 min

and then examined by fluorescence microscopy after staining

with 20,70-dichlorofluorescein diacetate (DCFH-DA), a ROS-

sensitive fluorescent probe. The hydrolyzed compound DCFH

is oxidized to yield dichlorofluorescin (DCF), which is detectable

by fluorescence microscopy or flow cytometry (Behl et al., 1994;

Suematsu et al., 1992). In contrast to the cell lines (HCT116,

HT29, KATOIII) expressing a high level of CD44 (CD44high), those

negative for CD44 expression (CD44neg, MKN28) or expressing

CD44 at a low level (CD44low, AGS) showed pronounced

DCFH-DA staining (Figure 1A). Thus, this result suggested that

CD44high gastrointestinal cancer cells have a more efficient

ROS defense system than do CD44neg or CD44low cells.

To examine the functional relevance of CD44 expression to

ROS defense in CD44high cancer cells, we depleted these cell

lines of CD44 by RNA interference (RNAi) (Figure 1B). Flow cyto-

metric analysis revealed that HCT116 cells and HT29 cells

depleted of CD44 by transfection with a small interfering RNA

(siRNA) specific for CD44 mRNA showed a small increase in

DCFH-DA staining compared with those transfected with

a control siRNA (Figure 1C; see Figure S1A available online). In

KATO III cells, which have a higher basal ROS level than other

cell lines, CD44 depletion by transfection with a siRNA specific

for CD44 mRNA markedly increased DCFH-DA staining com-

pared with those transfected with a control siRNA (Figure S1A).

These results suggest that the increase of ROS levels by CD44

ablation depends on cell context and basal ROS levels.

To exclude the differences of cellular redox status and further

examine the role of CD44 on ROS defense ability, we exposed

the cells to H2O2. CD44-deficient HCT116 cells manifested

a markedly greater increase in DCFH-DA staining after exposure

to H2O2 than did those transfected with the control siRNA

(Figure 1C). Similar effects of CD44 ablation on H2O2-induced

DCF fluorescence were also observed in the other two CD44high

cell lines (HT29, KATOIII), although the efficiency of CD44 knock-

down differed between the two lines (Figure S1B). These results

indicated that CD44 expression contributes to ROS defense in

cancer cells.

To investigate further the potential role of CD44 in the cellular

response to oxidative stress, we examined the activation of

p38MAPK, a major target of ROS (Muller, 2009). Depletion of

CD44 by RNAi resulted in a marked increase in the phosphoryla-

tion (activation) level of p38MAPK in HCT116 cells exposed to

H2O2 (Figure 1D). The H2O2-induced p38MAPK activation and

ROS accumulation in CD44-deficient HCT116 cells were

completely inhibited by treatment with N-acetylcysteine (NAC)

(Figures 1D and 1E). Thus, NAC treatment reversed the oxidative

stress phenotype of the CD44-depleted cells. These results sug-

gested that CD44 promotes ROSmetabolism in cancer cells and

thereby suppresses the activation of ROS-p38MAPK signaling.

CD44+ Gastric Tumor Cells Show a Low Level
of p38MAPK Phosphorylation In Vivo
To address the functional relevance of CD44 expression to

gastric tumorigenesis, we studied a transgenic mouse model

of gastric cancer, theK19-Wnt1/C2mE or Gan (gastric neoplasia)

mouse, in which both Wnt and prostaglandin E2 signaling path-

ways are activated in the gastric mucosa (Oshima et al., 2006).

These transgenic animals develop large, well-differentiated



Figure 1. CD44 Contributes to ROS Defense in Gastrointestinal Cancer Cells

(A) Cell lines incubated with 500 mMH2O2 for 20minwere stained with DCFH-DA (left, middle panels) andwith Hoechst 33342 (left, lower panels) and examined by

fluorescence microscopy. Cells not exposed to H2O2 were also analyzed with antibodies to CD44 and to Hoechst 33342 staining (left, upper panels). Scale bars,

100 mm. DCF fluorescence intensity (arbitrary units) was determined for >1000 cells in a representative experiment and is presented as mean ± SD values

(right panel).

(B) Flow cytometric analysis of CD44 expression on HCT116 cells transfected with control or CD44 siRNAs.

(C) HCT116 cells transfected with control or CD44 siRNAs were treated as in (A) and then stained with DCFH-DA, and subjected to flow cytometric analysis. RFI,

relative fluorescence intensity.

(D) HCT116 cells transfected with control or CD44 siRNAs were incubated in the absence or presence of 10 mMNAC for 5 min and then in the additional absence

or presence of 500 mMH2O2 for 20 min, lysed, and subjected to immunoblot analysis with indicated antibodies. The positions of bands corresponding to variant

(CD44v) and standard (CD44s) forms of CD44 are indicated. The fold increase in the intensity of the phospho-p38MAPK band relative to that in the leftmost lane is

also shown.

(E) HCT116 cells transfected with control or CD44 siRNAs were treated as in (D) and then stained with DCFH-DA and Hoechst 33342, and examined by fluores-

cence microscopy. Scale bars, 100 mm.

See also Figure S1.
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(intestinal-type) gastric tumors and become moribund around

30–50 weeks of age (Oshima et al., 2006). We first examined

the expression of CD44 in the gastric tumors of 30-week-old

Gan mice. Reverse transcription (RT) and polymerase chain

reaction (PCR) analysis of normal stomach and gastric tumor

tissue revealed upregulation of CD44 mRNA in gastric tumors

(Figure 2A), indicating that an increase in CD44 gene expression

is associated with gastric tumorigenesis. Immunohistochemical

analysis also showed that CD44 expression was increased in

gastric tumors relative to that in the normal glandular stomach

but that its pattern of expression in the tumors was heteroge-

neous (Figure 2B). We further found that the phosphorylated
form of p38MAPK, which is normally expressed in the differenti-

ated gastric surface epithelial cells (Figure 2C, lower panel),

was preferentially detected in tumor cells that were negative

for CD44 staining (Figure 2C, upper panel). We recently showed

that CD44 expressed in the tumor cells of Gan mice consists

mostly of variant isoforms (CD44v8–10) containing amino acids

derived from exons 8–10 (Ishimoto et al., 2010). Furthermore,

RT-PCR analysis revealed that CD44v8–10 mRNA, rather than

CD44s mRNA, was the dominant form of CD44 mRNA present

in the human gastrointestinal cell lines AGS, HCT116, HT29,

and KATOIII (Figure S2). Therefore, we next examined the

relation between CD44v expression and phosphorylation of
Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc. 389



Figure 2. CD44 and Phospho-p38MAPK Expression in Gastric Tumors of Gan Mice

(A) RT-PCR analysis of expression of the CD44 gene and of transgenes in the stomach of wild-type (WT) or Gan mice at 30 weeks of age. Expression of the gene

for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was examined as a control.

(B) CD44 staining in the normal stomach of aWTmouse (lower image) and in a gastric tumor of a 30-week-old Ganmouse (left, upper images). The boxed region in

the left image is shown at higher magnification in the right image. Arrows and arrowheads indicate CD44+ and CD44� tumor cells, respectively. Col, columnar

epithelium; Sq, squamous epithelium. Scale bars, 1 mm (left, upper images) and 100 mm (lower image, and right, upper images).

(C) H&E and immunostaining for CD44 and phospho-p38MAPK in a gastric tumor of a 30-week-old Gan mouse (upper images). H&E and immunostaining for

phospho-p38MAPK in the normal stomach of a WT mouse (lower images). Arrows and arrowheads indicate inversely correlated expression of CD44 and

phospho-p38MAPK, respectively, in tumor cells. Scale bars, 100 mm.

(D) Immunofluorescence staining for CD44v and phospho-p38MAPK together with staining of nuclei with 40,6-diamidino-2-phenylindole (DAPI). Arrows and

arrowheads indicate inversely correlated expression of CD44v and phospho-p38MAPK, respectively, in tumor cells. Scale bars, 20 mm. Lower images show

CD44v�, low-, and high-expressing cells at higher magnification of the boxed region in the upper image. Scale bars, 10 mm.

See also Figure S2.

(E) Dissociated tumor cells from Gan mice and glandular stomach cells from WT mice were stained with DCFH-DA and subjected to flow cytometric analysis.

(F) Dissociated tumor cells from Gan mice were subjected to flow cytometric analysis with antibodies to CD44v and DCFH-DA. RFI, relative fluorescence

intensity.
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p38MAPK with the use of antibodies specific for CD44v. Immuno-

fluorescence analysis revealed that the abundance of phospho-

p38MAPK was inversely correlated with CD44v expression within

a single tumorous gland (Figure 2D); CD44v� cells expressed

high levels of phospho-p38MAPK, CD44v high-expressing cells

did not express phospho-p38MAPK, and CD44v low-expressing

cells expressed a moderate level of phospho-p38MAPK. Consis-

tent with our data obtained with the HCT116 cell line (Figure 1D),

p38MAPK activation was thus found to be suppressed in CD44v+

cells of mouse gastric tumors compared with that in CD44v�

cells. Our observation that CD44 and phospho-p38MAPK expres-

sion appeared to be heterogeneous and inversely correlated

within individual tumorous glands of Gan mice suggested that

CD44+ tumor cells have an increased capacity for ROS defense.

To address this possibility we measured ROS level in tumor cells

isolated from Gan mouse by DCFH-DA. Gan mouse tumor cells
390 Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc.
showed much higher DCFH-DA fluorescence compared with

normal mouse gastric cells (Figure 2E), indicating that Gan

mouse tumor contains a high level of ROS. We next investigated

whether CD44v+ tumor cells contain a lower level of ROS

compared with CD44v� cells. DCFH-DA staining revealed that

CD44v+ tumor cells contain a much lower level of ROS than

CD44v� cells (Figure 2F), suggesting that CD44 expression

status is associated with ROS defense ability of tumor cells.

Upregulation of Antioxidant Gene Expression
in CD44+ Tumor Cells
We next examined the expression of antioxidant genes in tumor

cells isolated from Gan mice by fluorescence-activated cell

sorting (FACS). Thus, lineage marker (Lin)-negative cells that

were CD44+ or CD44� were isolated from the gastric tumors

of 30-week-old Gan mice (Figure 3A) and subjected to cDNA



Figure 3. Upregulation of Antioxidant Gene Expression in CD44+ Gastric Tumor Cells Isolated from Gan Mice

(A) Dissociated tumor cells from Gan mice were subjected to flow cytometric analysis with antibodies to CD44. See also Figures S3A and S3B.

(B) Expression of the indicated antioxidant enzyme genes in CD44+ cells relative to that in CD44� cells isolated as in (A), as determined by cDNA microarray

analysis. Data are from a representative experiment.

(C) Antioxidant enzyme gene expression in CD44+ cells relative to that in CD44� cells isolated as in (A), as determined by quantitative RT-PCR analysis. Data were

normalized by the amount of GAPDH mRNA and are mean ± SD from three independent experiments. *p < 0.01.

(D) Antioxidant enzyme gene expression in HCT116 cells transfectedwith a control siRNA relative to that in cells transfectedwith a CD44 siRNA, as determined by

cDNA microarray analysis. Data are from a representative experiment. See also Figure S3C.

(E) Immunoblot analysis of CD44 and PRDX isoforms in HCT116 cells transfected with a control siRNA or CD44 siRNAs (#1 or #2) for the indicated times. ERK and

a-tubulin were similarly analyzed as loading controls.
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microarray analysis. Compared with CD44� cells, CD44+ cells

manifested increased expression of Wnt target genes but only

low levels of expression of marker genes for gastric differentia-

tion, including those forMUC5AC, gastric H+/K+-ATPase subunit

beta (Atp4b), gastric intrinsic factor (Gif), and pepsinogenC (Pgc)

(Figures S3A and S3B), suggesting that CD44+ tumor cells are

maintained in an undifferentiated state. The expression of

several key antioxidant genes, including those for glutathione

peroxidase (GPX) and peroxiredoxin (PRDX) isoforms, was found

to be increased in CD44+ tumor cells compared with that in

CD44� cells (Figure 3B), consistent with the notion that CD44+

tumor cells have an increased capacity for ROS defense. Quan-

titative RT-PCR analysis confirmed that the abundance of

mRNAs for GPX1 and GPX2, which are major H2O2-reducing

antioxidant enzymes in the gastrointestinal tract, as well as

that of mRNAs for PRDX1 and PRDX4 was significantly higher

in CD44+ tumor cells than in CD44� cells (Figure 3C). Similar to
our observations for CD44+ gastric tumor cells, breast CSCs

have previously been found to express antioxidant enzyme

genes at increased levels and to show an enhanced ROS

defense ability compared with their nontumorigenic progeny

(Diehn et al., 2009).

We next examined whether depletion of CD44 might affect

antioxidant gene expression in cancer cells. Thus, HCT116 cells

were transfected with CD44 or control siRNAs and subjected to

cDNA microarray analysis or RT and real-time PCR analysis.

Although the CD44 siRNA was found to deplete the cells of

CD44 mRNA, the expression of antioxidant genes was largely

unaffected (Figures 3D; Figure S3C). We also examined the

abundance of PRDX isoforms in CD44-depleted HCT116 cells

by immunoblot analysis and found that CD44 depletion did not

affect the amounts of PRDX1, -2, -3, and -4 (Figure 3E). There-

fore, these results suggested that, although several antioxidant

enzyme genes are highly expressed in CD44+ cancer cells
Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc. 391



Cancer Cell

CD44 Promotes ROS Resistance in Cancer Cells
in vivo, the CD44-mediated antioxidative effect in cultured

cancer cells is largely independent of regulation of antioxidant

gene expression.

CD44v Regulates the Intracellular Level of GSH
On the basis of our observation that CD44 depletion did not

affect antioxidant gene or protein expression in cancer cells

(Figures 3D and 3E), we examinedwhether it might alter the intra-

cellular level of GSH in CD44high cancer cells. Depletion of CD44

was achieved with two different siRNAs that target different

sequences of CD44 mRNA (Figure S4A) and resulted in a

pronounced reduction in the intracellular GSH content of

HCT116 cells (Figure 4A), suggesting that CD44 contributes to

the regulation of the intracellular level of GSH. To examine

whether forced expression of CD44 affects intracellular GSH

content, we transiently transfected 293T cells (a transformed

human kidney cell line with a high transfection efficiency) with

an expression vector either for CD44s or for CD44v8–10, a major

variant isoform of CD44 in human gastrointestinal malignancies

(Figure S2) (Tanabe et al., 1993). The amount of GSH in cells

expressing CD44v was found to be significantly greater than

that in those expressing CD44s or in those transfected with the

empty vector (Figure 4B), suggesting that CD44v regulates intra-

cellular GSH content. Importantly, the increase of GSH content

achieved by CD44v8–10 expression was comparable to that

achieved by treatment with NAC, which is a precursor of GSH

and functions as an antioxidant (Figure 4B). All these findings

suggest that CD44v8–10 expression promotes GSH synthesis.

To further confirm this hypothesis, we stably transfected

MKN28 cells (CD44neg) with an expression vector either for

CD44s or for CD44v. The resulting CD44s- or CD44v-expressing

MKN28 cells (Figure S4B) were incubated for 24 hr with L-buthio-

nine-sulfoximine (BSO), which inhibits g-glutamylcysteinyl

synthase and thereby depletes intracellular GSH, and were

then allowed to recover for 24 hr in BSO-free medium. The

CD44v-expressing MKN28 cells, but not the CD44s-expressing

cells, were found to contain a significantly greater amount of

GSH at this time compared with cells transfected with the empty

vector (Figure 4C). Thus, this result suggested that CD44v, but

not CD44s, promotes GSH synthesis. Given that increased

GSH synthesis promotes resistance to anticancer agents that

induce ROS-mediated cytotoxicity (Trachootham et al., 2009),

we next investigated whether CD44v-dependent GSH synthesis

promotes the viability of cells exposed to H2O2 or to ROS-

inducing anticancer drugs such as cisplatin (CDDP) and doce-

taxel (DTX). We found that CD44v-expressing MKN28 cells

were more resistant to H2O2, CDDP, and DTX than were cells

stably transfected with the empty vector (Figure 4D). These

results suggested that promotion of GSH synthesis by CD44v

results in enhancement of cellular antioxidative capacity and

thereby promotes resistance to common chemotherapeutic

drugs.

Given that the availability of cysteine is rate limiting for GSH

synthesis (Ishii et al., 1987), we next investigated the effect of

CD44 depletion by RNAi on the amino acid content of HCT116

cells. This analysis revealed that CD44 depletion resulted in an

�67%decrease in the amount of cysteine, whereas the amounts

of other amino acids including glutamate and glycine were not

similarly affected (Figure 4E). Given that the intracellular level
392 Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc.
of cysteine is determined largely by the function of the xc�

system, which exchanges extracellular cystine for intracellular

glutamate, with the cystine then being rapidly converted to

cysteine and utilized for GSH synthesis (Lo et al., 2008), we

hypothesized that CD44 might influence the function of this

transporter. To test this hypothesis we directly measured cystine

uptake in HCT116 cells by incubating the cells with 15N-labeled

L-cystine and then determining the intracellular contents of the

mass-labeled cysteine by CE-MS-based metabolome analysis

(Shintani et al., 2009). We found that CD44 ablation by RNAi

resulted in significant inhibition of cystine uptake in HCT116 cells

(Figure 4F; Table S1), suggesting that CD44 affects the function

of the cystine transporter.

CD44 Depletion Reduces the Cell Surface Expression
and Stability of xCT
The xCT subunit confers substrate specificity on the xc� system,

allowing the cellular uptake of cystine in exchange for intracel-

lular glutamate, and is essential for cellular protection from

oxidative stress (Huang et al., 2005; Sato et al., 2005). To

examine whether the expression of xCT at the cell surface is

related to CD44 expression in cancer cells, we prepared amono-

clonal antibody that recognizes the extracellular domain of

human xCT and thenmeasured the amount of xCT at the surface

of the CD44high cancer cell lines HCT116, HT29, and KATOIII by

flow cytometry. The expression level of xCT at the surface of

these CD44high cancer cells was substantially higher than that

apparent for CD44neg (MKN28) cells (Figure 5A), suggesting

that cell surface expression of xCT might be related to CD44

expression. On the other hand we found that the amount of

xCT mRNA in these various cell lines was not correlated with

xCT protein expression at the cell surface (Figure S5A). We

also examined the possible effect of CD44 on the abundance

of xCT mRNA in HCT116 cells by RNAi. CD44 ablation resulted

in an increase in the amount of xCT mRNA, and this effect was

inhibited by NAC treatment (Figures S5B and S5C), indicating

that the increase in xCT mRNA abundance induced by CD44

depletion is due to increased intracellular accumulation of

ROS. The abundance of xCT mRNA was previously shown not

to correlate with the intracellular level of GSH in NCI-60 cancer

cells (Huang et al., 2005) but was found to be increased as

a result of cystine deprivation (Sasaki et al., 2002). Thus, our

results suggested that the amount of xCT mRNA is regulated

by the intracellular ROS level, whereas cell surface expression

of xCT might be regulated by CD44 expression status.

To examine the relevance of CD44 to the subcellular localiza-

tion of xCT, we performed immunocytofluorescence analysis by

confocal microscopy. Most xCT immunofluorescence at the

surface of HCT116 cells was found to colocalize with CD44

immunofluorescence, whereas RNAi-mediated CD44 ablation

reduced the amount of xCT at the plasmamembrane (Figure 5B).

Flow cytometry also revealed that CD44 ablation reduced the

amount of xCT at the cell surface without affecting the cell

surface expression of CD98hc in HCT116 cells (Figure 5C), sug-

gesting that CD44 regulates the subcellular localization of xCT,

but not that of CD98hc. We next investigated whether CD44

expression might affect the stability of xCT by establishing

HCT116 cells that stably express either a short hairpin RNA

(shRNA) specific for CD44 mRNA or a corresponding scrambled



Figure 4. CD44 Expression Correlates with the Intracellular Level of GSH

(A) GSH content of HCT116 cells transfected with CD44 siRNAs relative to that of those transfected with a control siRNA. Data are mean ± SD from three

independent experiments. *p < 0.01. See also Figure S4A.

(B) GSH content of HEK293T cells incubated with 1 mM NAC for 12 hr, expressing CD44v or CD44s relative to that of those transfected with the empty vector

(mock). Data are mean ± SD from three independent experiments. *p < 0.01.

(C)MKN28 cells stably expressing CD44v or CD44s, or those stably transfectedwith the empty vector (mock), were incubated with 500 mMBSO for 24 hr and then

allowed to recover in BSO-free medium for 24 hr. GSH content was analyzed as in (C). Data are mean ± SD from three independent experiments. *p < 0.01.

See also Figure S4B.

(D) MKN28 cells stably expressing CD44v, or those stably transfected with the empty vector (mock), were incubated for 72 hr with the indicated concentrations of

H2O2, CDDP, or DTX and then assayed for cell viability; data are expressed as treated/control cell ratio and are mean ± SD from three independent experiments.

The median inhibitory concentration (IC50) values are also shown.

(E) Amino acid contents of HCT116 cells transfected with the control siRNA or with CD44 siRNAs (#1 or #2). Data are expressed asmean ± SE from three separate

experiments. *p < 0.03 versus the value for cells transfected with the control siRNA. (F) Differences in 15N2-cystine uptake between HCT116 cells transfected with

CD44 siRNA and those transfected with the control siRNAs. Data are expressed as mean ± SE from five separate experiments. *p < 0.05. **p < 0.01 versus the

values for the cells transfected with the control siRNA.

Cancer Cell

CD44 Promotes ROS Resistance in Cancer Cells

Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc. 393



Figure 5. CD44 Regulates Cell Surface Expression of xCT, but Not that of CD98hc

(A) Flow cytometric analysis of cell surface xCT expression in HCT116, HT29, and KATOIII cells relative to that on MKN28 cells. Cells were stained with rat mono-

clonal antibodies to human xCT, which recognize the extracellular domain of xCT.

(B) Immunofluorescence analysis of xCT and CD44 in HCT116 cells transfected with control or CD44 siRNAs. Nuclei were also stained with DAPI.

Arrows indicate colocalization of xCT and CD44 at the cell surface; arrowheads indicate loss of surface expression of xCT in cells depleted of CD44.

Scale bars, 20 mm.

(C) Flow cytometric analysis of CD98hc, xCT, and CD44 expression at the surface of HCT116 cells transfected with control or CD44 siRNAs. Cells were stained

with antibodies to CD44 as well as with antibodies to CD98hc or to xCT.
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(control) shRNA (Figure S5D). We measured the protein levels of

xCT by both immunoblot and FACS analyses. Treatment of the

cells with the protein synthesis inhibitor cycloheximide (CHX)

revealed that the levels of xCT in the cells expressing the CD44

shRNA were reduced significantly faster than those in the cells

expressing the control shRNA (Figures 5D; Figure S5E), suggest-

ing that CD44 expression enhances the stability of xCT protein.
CD44v Interacts with and Stabilizes xCT
at the Plasma Membrane
Therefore, we hypothesized that CD44 and xCT interact at the

plasma membrane and that this molecular interaction stabilizes

the membrane localization of xCT and thereby promotes cystine

uptake in CD44high cancer cells. To test this hypothesis we

examined whether CD44 and xCT interact with each other by

immunoprecipitation analysis. Such analysis with antibodies to

CD44 revealed that both xCT and CD98hc indeed physically

interact with CD44 (Figure 5E). Furthermore, such analysis with

antibodies to xCT showed that xCT interacts preferentially with

130 kDa CD44v rather than with the 85 kDa CD44s isoform (Fig-

ure 5E). We recently found that CD44v (v6–10, v7–10, and v8–10)

was the predominant form of CD44 expressed in the gastric

tumors of Gan mice (Ishimoto et al., 2010). Thus, these observa-

tions suggested that CD44v may play a key role in resistance to

oxidative stress in gastrointestinal cancer cells and thereby

might promote tumor development.

To confirm that xCT preferentially interacts with CD44v, we

expressed recombinant CD44s or CD44v in 293T cells, which

contain only low levels of endogenous CD44, and performed

immunoprecipitation analysis with antibodies to xCT. Such anal-

ysis revealed that xCT specifically interacted with CD44v, not

with CD44s (Figure 5F). Together with our observation that

forced expression of CD44v, but not that of CD44s, increased

the intracellular GSH content in 293T cells (Figure 4B), these

results suggested that CD44v interacts with and stabilizes xCT

and thereby increases intracellular GSH content.

To further determinewhether variant region of CD44v is indeed

required for the interaction of CD44v and xCT, we generated

an expression plasmid encoding the S301A mutant of CD44v

(Figure S5F). Given that the v8–10 region of CD44v contains

consensus motifs for an N-linked glycosylation site (Asn-X-Ser/

Thr) (Dougherty et al., 1991), the CD44v S301A is considered

to be an N-linked glycosylation site mutant. The immunoprecip-

itation analysis revealed that the CD44v S301A failed to interact

with xCT (Figure 5G), suggesting that the v8–10 region of CD44 is
(D) Left panels show immunoblot analysis of xCT and b-actin (loading control) in

(40 mg/ml) for the indicated times. In the right panels, mean values ±SD from three

corresponding value for time zero (0) are shown. See also Figure S5E.

(E) HCT116 cell lysates were subjected to immunoprecipitation (IP) with antibod

resulting precipitates, as well as the original cell lysates (input), were subject

(anti-CD44cyto).

(F) Lysates of HEK293T cells expressing CD44v or CD44s, or of those transfecte

antibodies to xCT or with control IgG, and the resulting precipitates, as well as

antibodies to xCT or to CD44 (anti-CD44cyto).

(G) Lysates of HEK293T cells expressing CD44v or CD44v (S301A), or those transf

or with control IgG, and the resulting precipitates, as well as the original cell lysat

CD44 (anti-CD44cyto).

(H) HEK293T cells expressing CD44v or CD44v (S301A), or those transfected with

expressed relative to the value for mock-transfected cells and are mean ± SD fro
required for the specific interaction between CD44v and xCT.

Furthermore, forced expression of the CD44v S301A failed to

increase basal GSH level in 293T cells (Figure 5H). These results

suggest that specific interaction of CD44v and xCT maintains

a high level of GSH in cancer cells.

To determine whether xCT contributes to the ROS defense

mechanism of CD44high (HCT116) cancer cells, we investigated

the effect of xCT depletion by RNAi (Figure S5G) on ROS-scav-

enging ability. Ablation of xCT resulted in a significant increase in

DCFH-DA staining in cells exposed to H2O2 (Figure S5H), as did

treatment with BSO (Figure S5I), suggesting that xCT-mediated

cystine uptake and consequent GSH synthesis are important for

theROS-scavenging ability of cancer cells. Furthermore,we found

that H2O2-induced activation of p38MAPK was enhanced by xCT

depletion (Figure S5J), as it was by CD44 ablation (Figure 1D).

Thus, these results suggested that both CD44 and xCT are

required for suppression of ROS-induced p38MAPK activation.
CD44 Ablation Reduces the Number of Proliferating
Tumor Progenitor Cells and Inhibits Gastric Tumor
Development in Gan Mice
To examine whether CD44 expression affects tumor cell expan-

sion during gastric tumorigenesis in vivo, we crossed Gan mice

with CD44 knockout (CD44�/�) mice, which show no overt

phenotype during development (Schmits et al., 1997), in order

to generate CD44�/� Gan animals. Tumors were markedly

smaller in CD44�/� Gan mice than in Gan mice at 30 weeks of

age and thereafter, whereas tumor size was similar in animals

of the two genotypes up to 20 weeks of age (Figures 6A and

6B), suggesting that CD44 is required for the maintenance of

tumor cell proliferation. Furthermore, hematoxylin and eosin

staining (H&E) revealed that CD44�/� Gan mice only gave rise

to hyperplastic tumors (Figure 6B), suggesting that CD44

expression affects gastric tumor grade in Gan mice.

We next investigated themechanism underlying the difference

in tumor size between Gan mice and CD44�/� Gan mice. The

proportion of proliferating tumor cells that incorporated bromo-

deoxyuridine (BrdU) was significantly smaller in CD44�/� Gan

mice than in Gan mice (Figure 6C), indicating that the number

of proliferating progenitor cells was reduced in the CD44-defi-

cient hyperplastic tumors. In contrast the proportion of apoptotic

cells in tumors did not differ between mice of the two genotypes

(Figure 6D). Thus, these results indicated that CD44 contributes

to the proliferation of gastric tumor cells rather than to cell

survival in Gan mice.
HCT116 cells stably expressing control or CD44 shRNAs and exposed to CHX

independent experiments for the xCT/b-actin band intensity ratio relative to the

ies to CD44 (IM7) or to xCT, or with control immunoglobulin G (IgG), and the

ed to immunoblot analysis with antibodies to xCT, to CD98hc, or to CD44

d with the empty vector (mock), were subjected to immunoprecipitation with

the original cell lysates (input), were subjected to immunoblot analysis with

ected with the empty vector (mock), were subjected to IPwith antibodies to xCT

es (input), were subjected to immunoblot analysis with antibodies to xCT or to

the empty vector (mock), were analyzed for intracellular GSH content. Data are

m three independent experiments. *p < 0.01. See also Figure S5F.
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Figure 6. Growth of Gastric Tumors in Gan Mice Is

Suppressed by CD44 Ablation

(A) Gastric mucosal thickness in Gan or CD44�/� Gan

mice at the indicated ages relative to that in age-matched

wild-type (WT) mice. Data are mean ± SD for the indicated

number of animals. *p < 0.05 versus the corresponding

value for CD44�/� Gan mice.

(B) Macroscopic images and H&E of gastric tumors of Gan

and CD44�/� Gan mice at 30 weeks of age. Scale bars,

5 mm (upper panels) and 100 mm (lower panels).

(C) BrdU incorporation in gastric tumors of 30-week-old

Gan or CD44�/� Gan mice (left panels). Scale bars,

100 mm. The BrdU-labeling index was determined as

mean ± SD values for five mice of each genotype (right

panel); *p < 0.02.

(D) Apoptosis index for gastric tumors of 30-week-old Gan

orCD44�/�Ganmice. Data are mean ± SD for four mice of

each genotype. NS, not significant.
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CD44 Ablation Induces p38MAPK Activation
and p21CIP1/WAF1 Upregulation in Gastric Tumors
of Gan Mice
Given that sustained activation of p38MAPK is a characteristic

of cells with a high ROS level in vivo (Dolado et al., 2007), we

examined whether ablation of CD44 increases the abundance

of phospho-p38MAPK in gastric tumor cells. The region contain-

ing cells positive for phospho-p38MAPK was markedly extended

in hyperplastic tissue of CD44�/� Gan mice compared with

that in tumors of Ganmice (Figure 7A). Furthermore, immunoblot

analysis revealed that the amount of phospho-p38MAPK was

greater in CD44-deficient hyperplastic tumors than in CD44+

tumors (Figures 7B and 7C) and that CD44v, rather than

CD44s, was preferentially expressed in the latter tumors (Fig-

ure 7B). We next investigated the relation between CD44v

expression and p38MAPK signaling in human gastric cancer.

The staining patterns of CD44v and phospho-p38MAPK were

inversely correlated in tumorous glands of human gastric adeno-

carcinoma (Figure S6). Together, these results suggested that

CD44v negatively regulates p38MAPK activity and that ablation

of CD44v induces tumor cells to adopt a more differentiated

and less proliferative state through activation of p38MAPK.

We next investigated whether the extension of the tumor

region positive for p38MAPK phosphorylation apparent in

CD44�/� Gan mice might be due to the loss of the influence of

CD44 on the plasma membrane localization of xCT. Immunohis-

tochemical analysis revealed that genetic ablation of CD44 re-

sulted in a marked reduction in the amount of xCT at the cell

surface (Figure 7D), suggesting that the CD44-xCT axis might

regulate p38MAPK signaling through modulation of the intracel-

lular ROS level in gastric tumor cells.

To explore further the molecular mechanism underlying

p38MAPK-mediated tumor growth suppression, we examined

the expression of p21CIP1/WAF1, which is a major downstream

component of the pathway by which p38MAPK inhibits cell prolif-
396 Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc.
eration (Han and Sun, 2007) and participates

in the differentiation of gastric epithelial cells

(Katz et al., 2005). Quantitative RT-PCR analysis

revealed that CD44 ablation resulted in a

significant increase both in the amount of
p21CIP1/WAF1 mRNA (Figure 7E) and in that of the mRNA for the

gastric differentiation marker MUC5AC (Figure 7F) in gastric

tumors of Gan mice. Together, these results suggested that

CD44 ablation triggers growth arrest in immature and prolifera-

tive tumor cells through activation of p38MAPK and upregulation

of p21CIP1/WAF1, resulting in the suppression of tumor progres-

sion through the induction of cell differentiation, in the Gan

mouse model.

The xCT Inhibitor Sulfasalazine Suppresses
CD44-Dependent Tumor Growth and Promotes
Activation of p38MAPK in Tumor Cells In Vivo
We next examined whether xCT contributes to CD44-dependent

tumor growth. HCT116 cells stably expressing CD44 shRNA

formed significantly smaller tumors in nude mice than did those

expressing a control shRNA (Figure 8A), suggesting that HCT116

cells form tumors in vivo in a CD44-dependent manner. Further-

more, immunoblot analysis revealed that RNAi-mediated CD44

knockdown markedly increased the phosphorylation of

p38MAPK in the tumor cells (Figure 8B), indicating that CD44-

dependent tumor growth is associated with the suppression of

p38MAPK-mediated signaling. Sulfasalazine is a well-character-

ized specific inhibitor of xCT-mediated cystine transport and

has been shown to inhibit the growth, invasion, and metastasis

of several types of cancer (Chen et al., 2009; Gout et al., 2001;

Lo et al., 2008). We found that intraperitoneal administration of

sulfasalazine inhibited the growth of tumors formed by HCT116

cells in nude mice (Figure 8C), suggesting that the function of

xCT plays a role in the expansion of CD44+ tumor cells in vivo.

Furthermore, immunohistochemical analysis revealed that sulfa-

salazine treatment stimulated the phosphorylation of p38MAPK in

HCT116 tumor cells in vivo compared with that apparent in mice

treated with saline (Figure 8D). Immunoblot analysis of tumor

lysates also showed that sulfasalazine treatment increased

p38MAPK activation (Figure 8D), as did RNAi-mediated CD44



Figure 7. CD44 Ablation in Gastric Tumors

Increases the Abundance of Phospho-

p38MAPK and Upregulates p21CIP1/WAF1

(A) Immunostaining of CD44 (a and b) and

phospho-p38MAPK (c and d) in gastric tumors

of 30-week-old Gan (a and c) or CD44�/� Gan

(b and d) mice. Scale bars, 100 mm. See also

Figure S6.

(B) Immunoblot analysis of phospho-p38MAPK,

total p38MAPK, CD44, and ERK (loading control)

in lysates of gastric tumors from 30-week-old

Gan or CD44�/� Gan mice.

(C) Amount of phospho-p38MAPK in gastric tumors

of 30-week-old CD44�/� Gan mice relative to that

in those of Gan mice, as determined by immuno-

blot analysis. Data are mean ± SD for three mice

of each genotype. *p < 0.01.

(D) Immunostaining of xCT in gastric tumors of

30-week-old Gan or CD44�/� Gan mice. Arrows

indicate expression of xCT at the plasma

membrane in tumors of Gan mice, whereas arrow-

heads indicate the loss of xCT expression at the

plasma membrane in tumors of CD44�/� Gan

mice. Scale bars, 50 mm.

(E) Quantitative RT-PCR analysis of p21CIP1/WAF1

mRNA in tumors of 30-week-old CD44�/� Gan

mice relative to that in those of Gan mice. Data were normalized by the amount of GAPDHmRNA and are mean ± SD for three mice of each genotype. *p < 0.02.

(F) Quantitative RT-PCR analysis of MUC5ACmRNA in tumors of 30-week-old CD44�/� Gan mice relative to that in those of Gan mice. Data were normalized by

the amount of GAPDH mRNA and are mean ± SD for three mice of each genotype. *p < 0.01.
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knockdown (Figure 8B). Thus, these results suggested that the

activity of xCT plays a role in the ability of CD44+ tumor cells to

evade oxidative stress and p38MAPK-mediated growth suppres-

sion in vivo.

Finally, we examined whether suppression of xCT function by

sulfasalazine might enhance the effect of the anticancer drug

CDDP on tumor growth. The antitumor effect of CDDP at a low

dose (2mg/kg) was significantly enhanced by treatment with sul-

fasalazine (Figure 8E), suggesting that sulfasalazine reduces the

ROS defense capacity of cancer cells and sensitizes them to

available chemotherapeutic drugs.

DISCUSSION

Our results revealed a function of CD44v that contributes to the

ROS resistance of gastrointestinal cancer cells. CD44+ gastric

tumor cells of Gan mice were shown to express antioxidant

genes at higher levels compared with CD44� tumor cells. We

found that CD44+ tumor cells expressedWnt target genes signif-

icantly higher than CD44� tumor cells (Figure S3A). Given that

Wnt signals have been shown to be activated in stem-like cancer

cells (Vermeulen et al., 2010), we assume that CD44+ fraction

contains more stem-like cells than CD44� fraction. The previous

report demonstrated that the CD44+ breast CSCsmanifest upre-

gulation of antioxidant genes (Diehn et al., 2009). Therefore, we

speculate that the differences in expression of antioxidant genes

in CD44+ and CD44� fractions are due to the proportion of stem-

like tumor cells included in each fraction. However, in the present

study we also show that CD44 ablation suppressed the

synthesis of the nonenzymatic antioxidant GSHwithout affecting

the level of antioxidant gene expression in cultured cancer cells,

indicating that CD44-mediated ROS resistance is largely inde-
pendent of such antioxidant gene expression. Furthermore, we

found that CD44v interacts with and stabilizes the cystine trans-

porter subunit xCT and thereby regulates the intracellular level

of GSH in CD44+ cancer cells, resulting in suppression of

p38MAPK- and p21CIP1/WAF1-mediated growth inhibition. These

results indicate that ROS defense in CD44+ cancer stem-like

cells is supported by CD44v enhancement of GSH synthesis in

addition to high levels of antioxidant gene expression. We are

not able to rule out the possibility that CD44 directly or indirectly

controls the expression of antioxidant genes in CD44+ cancer

stem-like cells in vivo, thus with this issue requiring further

investigation.

Recent studies have indicated that increased levels of ROS

promote aging of hematopoietic stem cells (Ito et al., 2006)

and that, in Drosophila, high ROS levels sensitize hematopoietic

progenitors to the induction of differentiation (Owusu-Ansah and

Banerjee, 2009). On the other hand, CSCs aswell as normal stem

cells possess an enhanced ROS defense system (Diehn et al.,

2009; Phillips et al., 2006). Our results now show that CD44

expression correlates with ROS resistance in cancer cells as

a result of the enhancement of GSH synthesis by CD44. Thus,

expression of CD44 might serve as a functional marker for

CSCs with immature and ROS-resistant properties in various

tumor types.

CD44 is synthesized in multiple isoforms as a result of alterna-

tive mRNA splicing (Ponta et al., 2003). We and others have

previously shown that the expression of CD44v, but not that of

CD44s, is associated with progression of human gastrointestinal

malignancies (Tanabe et al., 1993). Furthermore, we have

recently shown that quiescent or slow-cycling gastric stem or

progenitor cells that reside in the normal mouse stomach and

undergo expansion during tumorigenesis express a high level
Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc. 397



Figure 8. Inhibition of xCT Function Increases p38MAPK Activity in Tumor Cells and Suppresses CD44-Dependent Tumor Growth In Vivo

(A) Macroscopic images of tumors formed in nude mice by HCT116 cells stably expressing control or CD44 shRNAs at 28 days after cell injection (top panel);

scale bar, 5 mm. The weight of tumors formed by HCT116 cells stably expressing the CD44 shRNA relative to that of those formed by the control cells was

also determined at 28 days after cell injection (bottom panel). Data are mean ± SD for five animals in each group. *p < 0.01.

(B) Lysates of tumors formed by HCT116 cells stably expressing control or CD44 shRNAs were subjected to immunoblot analysis with indicated antibodies

(right panel).

(C) Time course of the weight of tumors formed by HCT116 cells in nude mice treated with sulfasalazine (250 mg/kg) or saline. Data are mean ± SD for five mice

per group. *p < 0.01 versus the corresponding value for saline-treated animals.

(D) Immunostaining of phospho-p38MAPK in tumors formed by HCT116 cells in nude mice treated with sulfasalazine or saline (left panels); the boxed regions are

shown at higher magnification in the insets. Scale bars, 500 mm. Tumor lysates were also subjected to immunoblot analysis with indicated antibodies (right panel).

(E) The weight of tumors formed by HCT116 cells in nude mice treated with saline, CDDP (2 mg/kg), or CDDP (2 mg/kg) plus sulfasalazine (250 mg/kg) was

determined at 28 days after cell injection. Data are mean ± SD for five animals per group. *p < 0.01.

(F) Model for regulation of ROS-p38MAPK signaling by CD44v. CD44v maintains a high-level GSH by stabilizing the expression of xCT at the plasma membrane of

cancer cells. This action of CD44v results in suppression of ROS-p38MAPK signaling. HA, hyaluronic acid.

(G) Model for the role of the CD44v-xCT interaction in tumor development. CD44v and xCT interaction suppresses ROS-p38MAPK signaling in cancer cells by

upregulating intracellular GSH, thereby promoting tumor development.
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of CD44v (Ishimoto et al., 2010). We have now found that CD44v

interacts with xCT and that CD44 ablation results in depletion of

intracellular GSH and loss of cell surface expression of xCT, with

the amount of CD98hc at the cell surface being apparently unaf-

fected. Furthermore, forced expression of CD44v8–10, but not

that of CD44s, accelerated the recovery of GSH content in

CD44� cancer cells after GSH depletion induced by BSO. These

observations suggest that CD44v-mediated stabilization of xCT

at the plasma membrane promotes ROS resistance and mainte-

nance of cancer cells.

xCT is a component of a plasma membrane transporter (the

xc� system) that mediates the cellular uptake of extracellular

cystine in exchange for intracellular glutamate and thereby plays
398 Cancer Cell 19, 387–400, March 15, 2011 ª2011 Elsevier Inc.
a key role in GSH synthesis. The activity of xCT-mediated

cystine uptake in cancer cells is highly associated with cell

proliferation, chemoresistance, and tumor growth (Gout et al.,

2001; Lo et al., 2008). CD98hc is covalently linked to one of

several light chains, including LAT1, LAT2, y+LAT1, y+LAT2,

and ASC-1 in addition to xCT (Verrey et al., 2004), with the re-

sulting complexes functioning as amino acid transporters at

the plasma membrane. However, the precise mechanism by

which CD98hc selects its binding partner to constitute the

different types of amino acid transporter has remained

unknown. In the present study we showed that CD44v stabilizes

xCT expression at the plasma membrane, with the xc� system

then mediating cystine uptake and promoting GSH synthesis.
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Another variant (exon 3-containing) isoform of CD44 has been

shown to interact with monocarboxylate transporter (MCT)-1

and MCT-4, which are responsible for the transport of lactate

in breast cancer cells (Slomiany et al., 2009). Therefore, it is

possible that different CD44v isoforms contribute to the stabili-

zation of several different types of transporter at the plasma

membrane.

We previously showed that CD44 expressed in invasive

cancer cells undergoes matrix metalloproteinase-dependent

cleavage, which promotes turnover of CD44-mediated cell-

matrix interaction and efficient invasion of extracellular matrix

(Nagano et al., 2004; Nagano and Saya, 2004). These previous

observations together with our present findings suggest that

CD44 contributes to both the matrix invasion and ROS defense

capabilities of cancer cells. It is possible that a switch between

these dual functions of CD44 is determined by its stable expres-

sion at the cell surface or its cleavage.

Oxidative stress has been implicated in activation of both

p38MAPK and p53-p21CIP1/WAF1 signaling and, consequently, in

cell-cycle arrest and senescence (Muller, 2009). Constitutive

activation of p38MAPK has been shown to negatively regulate

tumorigenesis (Bulavin et al., 2004; Dolado et al., 2007; Han

and Sun, 2007). Furthermore, p21CIP1/WAF1 is an important medi-

ator of the differentiation of gastrointestinal epithelial cells

(Katz et al., 2005; van de Wetering et al., 2002). Ablation of

CD44 in mice harboring a transgene for tumor necrosis factor-

a exacerbates chronic inflammatory arthritis as a result of exces-

sive p38MAPK activation, indicative of increased levels of ROS

(Hayer et al., 2005). Thus, expression of CD44 might be required

to support cell proliferation in an inflammatorymicroenvironment

characterized by increased oxidative stress. We have now

shown that CD44 ablation suppressed gastric tumor growth in

a mouse model of spontaneous tumorigenesis concomitant

with the upregulation of p38MAPK phosphorylation and

p21CIP1/WAF1 gene expression. Furthermore, treatment with the

specific xCT inhibitor sulfasalazine induced p38MAPK activation

and suppressed CD44-dependent tumor growth in an HCT116

xenograft model. Furthermore, the effect of the ROS-inducing

anticancer drug CDDP on CD44-dependent HCT116 tumor

growth was significantly enhanced by sulfasalazine treatment.

Together, these findings indicate that xCT-mediated suppres-

sion of ROS-p38MAPK signaling that negatively regulates the

tumorigenic and proliferative capacities of tumor cells plays

a role in the CD44-mediated expansion of tumor cells.

In conclusion our present data provide evidence that the

expression of CD44v and its association with xCT block the

ROS-induced stress signaling that results in growth arrest, cell

differentiation, and senescence, and thereby promote the prolif-

eration of cancer cells and the formation of lethal gastrointestinal

tumors (Figures 8F and 8G). Given that CD44-expressing CSCs

play a central role in resistance to cancer therapy, it has been

suggested that definitive treatment should target the CD44high

cell population in cancer. On the other hand, given that

CD44 appears to have numerous functions, further investigation

of other functions of this molecule in tumor growth and

maintenance is warranted. Our present study indicates that

CD44v-targeted therapy may impair the ROS defense ability of

gastrointestinal cancer stem-like cells and thereby sensitize

them to currently available cancer treatments.
EXPERIMENTAL PROCEDURES

Transgenic Mice

K19-Wnt1/C2mE transgenic (Gan) mice were described previously (Oshima

et al., 2006). CD44�/� mice were obtained from The Jackson Laboratory

(Bar Harbor, ME, USA). Ganmicewere crossedwithCD44�/�mice to generate

CD44�/� Gan mice. Wild-type littermates of Gan mice were used as controls.

All animal experiments were performed in accordance with protocols

approved by the Ethics Committee of Keio University.

Statistical Analysis

Data are presented as mean ± SD and were analyzed with the unpaired

Student’s t test with the use of Excel 2007 (Microsoft, Redmond, WA, USA).

A p value of <0.05 was considered statistically significant.
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Coordinates have been deposited in the GEO database with accession codes
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