
FOGA-III: HOW DOES GENETIC
CHANGE HAPPEN? - NATURAL GENETIC

ENGINEERING OF GENOME STRUCTURE

• Cells have a large toolbox of biochemical systems
that carry out genome restructuring at all levels of
complexity
• Sequenced genomes display structures and
relationships that reveal the evolutionary importance
of natural genetic engineering functions
• Natural genetic engineering functions are subject to
cellular regulation and control



Outline

• Personal history with natural genetic
engineering

• The mammalian immune system
• Natural genetic engineering in evolution
• Non-random features of natural genetic

engineering
• Advantages of evolution by natural genetic

engineering



Mobile DNA
- IS elements

Shapiro JA. Mutations caused by the insertion
of genetic material into the galactose operon of
Escherichia coli. J Mol Biol. 1969 Feb
28;40(1):93-105.
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Replicative transposition
and DNA rearrangements

Shapiro, J. 1979. "A
molecular model for
the transposition and
replication of
bacteriophage Mu and
other transposable
elements." Proc. Nat.
Acad. Sci. U.S.A. 76,
1933-1937.



Differential Replicative Transposition of Mudlac
in E. coli Colonies - Starvation Triggered

Shapiro, J.A. and N.P. Higgins. 1989. Differential activity of a transposable element in E. coli
colonies. J. Bacteriol. 171, 5975-5986.



Stress-induced ara-lac fusions
and adaptive mutation
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Shapiro, J.A. 1997b. Genome organization, natural genetic engineering, and adaptive mutation. Trends in Genetics 13, 98-104



Immune Systems Receptors: How to
generate virtually infinite diversity

with finite coding capacity



Combinatorial Diversity:
assembling immunoglobulin coding sequences

from cassettes



Junctional Flexibility: Augmenting Diversity

Fugmann et al. 2000. The RAG proteins
and V(D)J recombination: complexes,
ends and transposition. Annu Rev
Immunol 18:495-527.

D. C. van Gent, J. H. Hoeijmakers,
R. Kanaar, Chromosomal Stability
And The Dna Double-Stranded
Break Connection  Nature Rev.
Genet. 2, 196 (2001)



Antigen stimulation/selection:
a rapid evolution system



Post-selection (antigen stimulation): antibody
improvement and functional diversification

Nature
Reviews
Molecular
Cell Biology
2; 493-503
(2001)
LINKING
CLASS-
SWITCH
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ATION
WITH
SOMATIC
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ATION



Transcriptional Targeting of Class
Switch Recombination

Nature
Reviews
Molecular
Cell Biology
2; 493-503
(2001)
LINKING
CLASS-
SWITCH
RECOMBIN
ATION
WITH
SOMATIC
HYPERMUT
ATION



Immune System Lessons:
cellular capabilities for controlled but non-

determined DNA restructuring

• Tight regulation of complex set of events as to cell type, sequence of
particular DNA changes, and linkage to selection & cellular proliferation
• Capacity for multiple types of DNA changes, including ability to
incorporate untemplated sequences
• Targeting of VDJ joining events to particular locations within coding
regions while maintaining flexibility of novel sequences formed
• Transcriptional activation and targeting of somatic hypermutation (base
changes) to V regions of Ig coding sequences
• Lymphokine-directed transcriptional activation and targeting of class
switch recombination (breakage and rejoining)



Natural genetic engineering of
sequenced genomes - Pack-MULEs

Ning Jiang, Zhirong Bao, Xiaoyu Zhang, Sean R. Eddy and Susan R. Wessler. 2004. Pack-MULE transposable
elements mediate gene evolution in plants. Nature 431, 569-573.



Natural Genetic Engineering Modalities
• Homology-dependent exchange & gene conversion:

- DS break repair
- Rearrangements by crossover at dispersed homologies
- Cassette exchange, protein diversification

• Non-homologous end joining (NHEJ)
- DS break repair
- Targeted and untargeted rearrangements

• Mutator polymerases
• Terminal transferase - insertion of novel sequences
• Site-specific recombinases

- Integration of horizontally transferred DNA
- Regulation of protein synthesis, protein diversification

• DNA transposons (replicative, cut-&-paste, rolling circle helitrons)
- Amplification and insertion of repeat elements
- Large-scale rearrangements (in particular, duplications)

• Reverse transcription-dependent retrotransposons (retroviral-like, LINEs, SINEs)
- Amplification and insertion of repeat elements
- Integration of processed RNA cDNA copies
- Small-scale movement of genomic segments (e.g. exon shuffling)

• Homing and retrohoming introns



Natural genetic engineering of sequenced
genomes - protein coding sequences
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Nekrutenko, A. and W.-H. Li.  2001.  Transposable elements are found in a large number of human
protein coding regions. Trends in Genetics 17:  619-625



Leaf wounding and retrotransposon transcription

http://www-biocel.versailles.inra.fr/Anglais/03Transposon.html

The expression of the tobacco Tnt1 retrotransposon is induced by
wounding : the expression of the LTR-GUS construct is detected by a blue
staining surrounding injury points in transgenic tomato (A), tobacco (B)
and Arabidopsis (C) plants.

M.-A. Grandbastien et al. Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae.
Cytogenetic and Genome Research 2005;110:229-241



Targeting of natural genetic engineering

Shapiro, JA. 2005. A 21st Century View Of Evolution: Genome System Architecture, Repetitive DNA, And Natural Genetic Engineering. Gene
345: 91-100

Known molecular mechanisms:

• Sequence recognition by proteins (yeast mating-type switching,
ribosomal LINE elements,  homing introns, VDJ joining);
• Protein-protein interaction wth transcription factors or chromatin
proteins (Ty retrotransposon targeting);
• Sequence recognition by RNA (reverse splicing of group II
retrohoming introns);
• Transcriptional activation of target DNA (somatic hypermutation;
class-switch recombination).

Unknown mechanisms:

• Telomere targeting of certain LINE elements in insects;
• HIV & MLV targeting upstream of transcribed regions;
• P factor homing directed by transcription, chromatin signals;
• P factor targeting to heat-shock promoters.



Yeast Ty5 targeting

S. Sandmeyer. Integration by design. PNAS, May 13, 2003; 100(10): 5586 - 5588.



Advantages of non-random searches of
genome space at evolutionary crises

• Genome changes occur under stress or other conditions, when they are most likely
to prove beneficial;

• Multiple related changes can occur when a particular natural genetic engineering
system is activated;

• Rearrangement of proven genomic components increases the chance that novel
combinations will be functional;

• Targeting can increase the probability of functional integration and reduce the risk
of system damage (ensure syntactically correct changes in the program architecture,
as in GP);

• Rearrangements followed by localized changes provide opportunities for fine tuning
once novel function has been achieved.


