FOGA-III: HOW DOES GENETIC

CHANGE HAPPEN? - NATURAL GENETIC
ENGINEERING OF GENOME STRUCTURE

* Cells have a large toolbox of biochemical systems
that carry out genome restructuring at all levels of
complexity

e Sequenced genomes display structures and
relationships that reveal the evolutionary importance
of natural genetic engineering functions

» Natural genetic engineering functions are subject to
cellular regulation and control



Outline

Personal history with natural genetic
engineering

The mammalian immune system
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Advantages of evolution by natural genetic
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Replicative transposition
and DNA rearrangements
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Differential Replicative Transposition of Mudlac
in E. coli Colonies - Starvation Triggered
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Stress-induced ara-lac fusions
and adaptive mutation
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Immune Systems Receptors: How to
generate virtually infinite diversity
with finite coding capacity
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Combinatorial Diversity:
assembling immunoglobulin coding sequences
from cassettes
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Junctional Flexibility: Augmenting Diversity
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Antigen stimulation/selection:
a rapid evolution system

Lymph node T-B cell interaction Affinity maturation

Mature Reviews | Molecular Cell Biclogy



Post-selection (antigen stimulation): antibody
improvement and functional diversification
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Transcriptional Targeting of Class

Switch Recombination
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Immune System Lessons:
cellular capabilities for controlled but non-
determined DNA restructuring

* Tight regulation of complex set of events as to cell type, sequence of
particular DNA changes, and linkage to selection & cellular proliferation
e Capacity for multiple types of DNA changes, including ability to
incorporate untemplated sequences

» Targeting of VDJ joining events to particular locations within coding
regions while maintaining flexibility of novel sequences formed
 Transcriptional activation and targeting of somatic hypermutation (base
changes) to V regions of Ig coding sequences

* Lymphokine-directed transcriptional activation and targeting of class
switch recombination (breakage and rejoining)



Natural genetic engineering of
sequenced genomes - Pack-MULESs
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Natural Genetic Engineering Modalities

* Homology-dependent exchange & gene conversion:
- DS break repair
- Rearrangements by crossover at dispersed homologies
- Cassette exchange, protein diversification
e Non-homologous end joining (NHEJ)
- DS break repair
- Targeted and untargeted rearrangements
* Mutator polymerases
» Terminal transferase - insertion of novel sequences
e Site-specific recombinases
- Integration of horizontally transferred DNA
- Regulation of protein synthesis, protein diversification
* DNA transposons (replicative, cut-&-paste, rolling circle helitrons)
- Amplification and insertion of repeat elements
- Large-scale rearrangements (in particular, duplications)
* Reverse transcription-dependent retrotransposons (retroviral-like, LINEs, SINEs)
- Amplification and insertion of repeat elements
- Integration of processed RNA cDNA copies
- Small-scale movement of genomic segments (e.g. exon shuffling)
* Homing and retrohoming introns



Natural genetic engineering of sequenced
genomes - protein coding sequences
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Leaf wounding and retrotransposon transcription

http://www-biocel.versailles.inra.fr/Anglais/03Transposon.html

The expression of the tobacco Tntl retrotransposon is induced by
wounding : the expression of the LTR-GUS construct is detected by a blue

staining surrounding injury points in transgenic tomato (A), tobacco (B)
and Arabidopsis (C) plants.

M.-A. Grandbastien et al. Stress activation and genomic impact of Tntl retrotransposons in Solanaceae.
Cytogenetic and Genome Research 2005;110:229-241



Targeting of natural genetic engineering

Known molecular mechanisms:

* Sequence recognition by proteins (yeast mating-type switching,
ribosomal LINE elements, homing introns, VD] joining);

* Protein-protein interaction wth transcription factors or chromatin
proteins (Ty retrotransposon targeting);

* Sequence recognition by RNA (reverse splicing of group II
retrohoming introns);

* Transcriptional activation of target DNA (somatic hypermutation;
class-switch recombination).

Unknown mechanisms:

* Telomere targeting of certain LINE elements in insects;

e HIV & MLV targeting upstream of transcribed regions;

P factor homing directed by transcription, chromatin signals;
e P factor targeting to heat-shock promoters.

Shapiro, JA. 2005. A 21% Century View Of Evolution: Genome System Architecture, Repetitive DNA, And Natural Genetic Engineering. Gene
345: 91-100



Yeast TyS targeting
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Advantages of non-random searches of
genome space at evolutionary crises

Genome changes occur under stress or other conditions, when they are most likely
to prove beneficial;

Multiple related changes can occur when a particular natural genetic engineering
system is activated;

Rearrangement of proven genomic components increases the chance that novel
combinations will be functional;

Targeting can increase the probability of functional integration and reduce the risk
of system damage (ensure syntactically correct changes in the program architecture,
as in GP);

Rearrangements followed by localized changes provide opportunities for fine tuning
once novel function has been achieved.



