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ABSTRACT Cancer cells catabolise nutrients in a different way
than healthy cells. Healthy cells mainly rely on oxidative
phosphorylation, while cancer cells employ aerobic glycolysis.
Glucose is the main nutrient catabolised by healthy cells, while
cancer cells often depend on catabolism of both glucose and
glutamine. A key organelle involved in this altered metabolism is
mitochondria. Mitochondria coordinate the catabolism of glucose
and glutamine across the cancer cell. Targeting mitochondrial
metabolism in cancer cells has potential for the treatment of this
disease. Perhaps the most promising target is the hexokinase-
voltage dependent anion channel-adenine nucleotide translocase
complex that spans the outer- and inner-mitochondrial mem-
branes. This complex links glycolysis, oxidative phosphorylation
and mitochondrial-mediated apoptosis in cancer cells. This
review discusses cancer cell mitochondrial metabolism and
the small molecule inhibitors of this metabolism that are in
pre-clinical or clinical development.
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ABBREVIATIONS

alpha-TOS  alpha-tocopheryl succinate

ANT adenine nucleotide translocase

ATP adenosine triphosphate

CAO 4-(N-(S-cysteinylacetyl)amino)
phenylarsonous acid
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FADH, flavin adenine dinucleotide

FH fumarate hydratase

GCAO 4-(N-(S-cysteinylglycylacetyllamino) phenylarsonous
acid

G6P glucose-6-phosphate

GLUT glucose transporter

GPT glutamate pyruvate transaminase

GSAO 4-(N-(S-glutathionylacetyl)amino)phenylarsonous
acid

HIFI hypoxia inducible factor |

IDH isocitrate dehydrogenase

NADH nicotinamide adenine dinucleotide (reduced)

NADPH nicotinamide adenine dinucleotide phosphate
(reduced)

NSCLC non-small-cell lung carcinoma

PENAO 4-(N-(S-penicillaminylacetyl)amino)phenylarsonous
acid

PDH pyruvate dehydrogenase

PDHK pyruvate dehydrogenase kinase

SDH succinate dehydrogenase

TCA tricarboxylic acid cycle

VDAC voltage dependent anion channel

CANCER CELL METABOLISM

In a healthy cell the vast majority of energy is supplied by
oxidative phosphorylation. Glucose is the main source of
energy, undergoing glycolysis in the cytosol, before pyru-
vate enters the mitochondria and is converted to acetyl
CoA. The tricarboxylic acid (TCA) cycle moves the carbon
backbone around, generating FADHy; and NADH which
can then enter oxidative phosphorylation and produce

ATP.
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Many cancer cells exhibit increased glycolysis, with
much of the pyruvate being converted to lactate, in contrast
to entry into the mitochondria and conversion to acetyl
CoA. This is known as the Warburg effect (1). The increase
in glucose metabolism to lactate, though, provides only a
fraction of the ATP that is provided by oxidative
phosphorylation. The relative contribution of mitochondria
to ATP production varies between cancer type (for a review
see (2)). Up to 34 molecules of ATP are produced by the
complete metabolism of glucose, with glycolysis contribut-
ing only two of these molecules. A number of theories have
been proposed to explain the apparently inefficient
switch in energy supply, beginning with Warburg’s
original proposal that mitochondria are defective in
cancer (1). It has become clear, though, that cancer cells
often have normal levels of oxidative phosphorylation (2—
4). The current theory for the Warburg effect is that the
increased biosynthesis required by rapidly proliferating
cells (anabolism of DNA, lipids and proteins) is more
efficiently supplied by acrobic glycolysis than oxidative
phosphorylation (5-7).

Rapidly proliferating cancer cells require not only
energy, but also building blocks such as amino acids and
nucleic acids for cell biosynthesis and mitosis. In that
regard, various glycolytic and TCA cycle intermediates are
siphoned off, requiring greater amounts of glucose, or an
alternative, to supply the greater demand for biosynthetic
components. Glutamine catabolism appears to be the
alternative for the supply of these components in cancer
cells (8—10). As a cell prepares for mitosis, the expression of
enzymes involved in nucleotide, carbohydrate and lipid
synthesis increases. These processes are supported by
precursors from glycolysis, the pentose phosphate pathway,
the tricarboxylic acid pathway, oxidative phosphorylation
and amino acid metabolism (in particular glutaminolysis).

Tumors are characterized by regions of hypoxia result-
ing in low levels of nutrients and increased levels of waste
(11). One of the key responses to hypoxia within a cell is the
expression of hypoxia inducible factor 1 (HIF1). HIF1 shifts
the cell’s metabolism from oxygen-dependent energy
generation to oxygen-independent mechanisms. In tumor
cells, HIF1 expression can be upregulated even under
normal oxygen conditions. A number of oncogenes con-
tribute to HIF1 expression in cancer, including Ras, SRC
and phosphoinositide 3-kinase, or the loss of tumor
suppressor genes such as von Hippel-Lindau or PTEN
(12). HIF1 is a transcription factor that activates genes
involved in the characteristic shift in metabolism of tumor
cells, including enzymes of glycolysis such as hexokinase,
phosphofructokinase, lactate dehydrogenase and the glu-
cose transporter GLUT1 (12,13). Pyruvate dehydrogenase
kinase is activated by HIFI, which inhibits the entry of
pyruvate into the TCA cycle. HIF1 upregulation, therefore,
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accounts for many of the changes associated with the
Warburg effect.

Along with HIFI, the expression of the transcription
factors c-Myc and p53 are also altered in many cancer cells.
A frequently expressed oncogene, c-Myc is involved in the
transactivation of lactate dehydrogenase and the glucose
transporter GLUT1 (14,15), and the induction of gluta-
minolysis (16). HIF1 can cooperate with c-Myc to increase
pyruvate dehydrogenase kinase and hexokinase II expres-
sion (17). p53 is a tumor suppressor gene that is frequently
expressed in a mutated form in tumors, leading to an
increase in hexokinase II expression, an increase in glucose
uptake, a reduced inhibition of phosphofructokinase-1
(increased activity), and reduced assembly of the cyto-
chrome c¢ oxidase complex (complex IV of the electron
transport chain) (18).

Cancers, therefore, often exhibit altered expression of
metabolic enzymes. Where cancer cell metabolism differs
from healthy cell metabolism provides an opportunity to
selectively target this disease. In this review, we focus on the
role of mitochondria in cancer cell metabolism. A number
of small molecule inhibitors of mitochondrial metabolism
that target a number of mitochondrial transporters or
enzymes are in pre-clinical or clinical development. We
discuss the mechanisms of action and state of development
of these inhibitors.

MITOCHONDRIAL METABOLISM IN CANCER
CELLS

Despite the shift from oxidative phosphorylation to aerobic
glycolysis in cancer cells, mitochondria still play a key role in
their survival. In cancer cells, mitochondria supply anywhere
from 40 to 75% of the cells ATP requirements (19). This
means that disrupting oxidative phosphorylation will signif-
icantly interrupt the cancer cell’s energy supply. However, it
is not just the mitochondria’s importance in energy supply
that makes them a good target for cancer therapy.
Mitochondria also play a major role in the synthesis of
amino acids, purines, pyrimidines, carbohydrates and fatty
acids by supplying intermediates from the TCA cycle.

In the following sections we discuss the role that
mitochondria play in cancer cell glycolysis, oxidative
phosphorylation, ATP transport and glutaminolysis. Syn-
thetic and natural inhibitors of proteins involved in these
respective pathways are discussed and the current state of
their development as anti-cancer agents is presented.

Glycolysis

Glycolysis is the catabolic pathway through which glucose is
broken down to pyruvate. It involves ten reactions,
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consuming two and producing four molecules of ATP per
glucose molecule. Other monosaccharides can enter glycol-
ysis after being first converted to any one of the
intermediates. Intermediates can be siphoned off to fuel
other metabolic pathways, for example glucose 6-phosphate
1s the first substrate of the pentose phosphate pathway.
Glycolysis occurs in the cytosol under aerobic or anaerobic
conditions. Two phases of glycolysis exist: the first phase
consumes ATP whilst converting glucose to two molecules
of glyceraldehyde 3-phosphate, while the second phase
converts each molecule of glyceraldehyde 3-phosphate to
pyruvate producing four ATP in the process.

Hexokinase (HK, EC 2.7.1.1) mediates the first step of
glucose catabolism, phosphorylating glucose to produce
glucose 6-phosphate. Once phosphorylated, glucose is
essentially trapped in the cell, as GLUT, the passive
bidirectional transporter of glucose, is unable to transport
glucose 6-phosphate out of the cell (20). There are four
isoforms of HK, numbered I through IV. Isoforms I and II
can interact with the outer-mitochondrial membrane, iso-
form III is found in a perinuclear compartment, and
isoform IV (also known as glucokinase) is cytosolic (21,22).
HKI is predominantly expressed in the brain, HKII in
msulin sensitive tissue, HKIII has very low expression but
can be detected in the lung, and HKIV is found in the liver
and the pancreas (22). HKII expression is silenced in
normal cells due to methylation of its promoter (23). In
malignant cells, HKII 1s overexpressed (21,24,25) and
generally accounts for the increased activity of hexokinases.

Glucose +
ATP
ADP + i

®

ATP =—— ADP

Pyr—= AcCoA

Hypoxia (26) and the mutated p53 gene (27) are responsible
for increased HKII expression in cancer cells.

When tumors arise in organs that predominantly express
HKIV, such as the liver and the pancreas, one of the first
changes observed is a switch in expression from HKIV to
HKII (28,29). The properties of HKII are an important
factor in aerobic glycolysis: 1) HKI-IIT have a higher affinity
for glucose than HKIV (K,, of 0.02 mM for I-III, and
5 mM for IV) (21), ii) the N-terminal hydrophobic domain
allows HKI and II to associate with the mitochondrial
membrane in contact with the voltage dependant anion
channel (VDAC) and, iii) in contrast to HKI, HKII has two
active glucokinase-equivalent-domains (21) and is more
efficient at phosphorylating glucose. HKII expression in
cancer cells, therefore, enhances their ability to catabolise
glucose.

HKII binds to the voltage dependent anion channel
(VDAC) of the outer mitochondrial membrane, which
interacts with adenine nucleotide translocase (ANT) of the
This has
implications for both glycolysis and apoptosis of cancer
cells. HKII’s association with VDAC: affords it preferential
access to ATP produced by oxidative phosphorylation (31),
while blunting glucose 6-phosphate feedback inhibition of
the enzyme (32). This allows for greater flux of glucose in
cancer cells. Moreover, binding of HKII to VDAC has
been shown to inhibit apoptosis of the cell (33—35). Binding
of HKII to VDAC blocks binding of the pro-apoptotic
molecule Bax to VDAC (33). Bax binding to VDAC

inner-mitochondrial membrane (30) (Fig. 1).

NADH—Z» NAD
4

Glutamine

Fig. I Mitochondrial metabolism in cancer cells. Cancer cells fuel their growth through the catabolism of two main nutrients: glucose and glutamine. The
first step in glycolysis, conversion of glucose to glucose-6-phosphate (G-6-P), is catalyzed by hexokinase and cancer cells mostly employ an isoform (HKI)
that is bound to mitochondria via interaction with the voltage dependent anion channel (VDAC). This affords HKII preferential access to the mitochondrial
ATE generated by oxidative phosphorylation (complexes 1-V), via inner-membrane adenine nucleotide translocase (ANT). The pyruvate (Pyr) generated by
glycolysis is converted to lactic acid (Lac) or enters the mitochondrial matrix where it is catabolised to acetyl coenzyme A (AcCoA) by pyruvate
dehydrogenase (PDH), which is controlled by pyruvate dehydrogenase kinase (PDHK). The expression of genes required for glutamine uptake and
catabolism are increased in cancer cells and mitochondrial metabolism is reprogrammed to depend more on glutamine catabolism for TCA cycle carbon in
the form of a-ketoglutarate (aKG). One mechanism of conversion of Glu to aKG is catalysed by glutamate pyruvate transaminase (GPT). Mutations in the
TCA cycle enzymes succinate dehydrogenase (SDH), fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) have been linked to tumorigenesis.
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initiates cytochrome c¢ release from the mitochondria,
propagating apoptosis across the cell. The HKII interaction
is not specific for a particular VDAC isoform (36).

The nature of the HKII-VDAC interaction has been
probed in bovine brain mitochondria (37,38). There
appears to be two types of interaction, one that is
dissociable by glucose 6-phosphate and one that is not
(38). The HK in this system utilizes predominantly
mitochondrial ATP as its co-substrate, rather than cytosolic
sources of ATP (38). Binding of HK to VDAC is enhanced
when VDAC is associated with ANT (39,40). In addition,
binding of HK to VDAC induces channel closure that is
reversed by glucose 6-phosphate (41). Interestingly, the
HK-VDAC association in cancer cells appears to influence
the lipid (cholesterol) distribution of the mitochondrial
membrane (42). Changes in membrane cholesterol content
have the potential to affect the function of membrane
bound enzymes, such as those of the electron transport
chain.

It has been proposed that binding of HK to VDAC-
ANT in cancer cells helps to maintain the mitochondrial
membrane potential by facilitating the reverse reaction
catalyzed by HK, that is, conversion of glucose-6-phosphate
to glucose (43,44). This then leads to mitochondrial import
of ATP, not export. However, this model is controversial as
HK has also been reported to inhibit VDAC-mediated
import of ATP into mitochondria (45).

Pyruvate dehydrogenase (PDH, EC 1.2.4.1) is the
connecting step between glycolysis and the TCA cycle
(Fig. 1). Following entry of pyruvate into the mitochondria,
by an as yet unknown transporter, PDH catalyzes its
conversion into acetyl CoA in an irreversible reaction (46).
PDH activity is regulated by phosphorylation, which is
controlled by two enzymes PDH kinase (EC 2.7.11.2) and
PDH phosphatase (EC 3.1.3.43) (Fig. 1). PDH is inactive in
its phosphorylated state. Gancer cells express high levels of
PDH kinase (17,47-50) and so maintain PDH in its inactive
form, which promotes aerobic glycolysis. Inhibiting PDH
kinase permits PDH activity and the channeling of pyruvate
into the TCA cycle (51).

The TCA cycle, also known as the citric acid cycle or
Krebs cycle, continues the breakdown of glucose linking
glycolysis to oxidative phosphorylation (Fig. 1). It consists of
a series of reactions transferring hydride ions to NAD and
FAD (52). The entry of newly synthesized acetyl CoA is
commonly considered as the starting point of the cycle. In
the cycle, succinate undergoes oxidation by succinate
dehydrogenase (SDH, EC 1.3.99.1, 1.3.5.1) to form
fumarate, while fumarate undergoes hydration by fumarate
hydratase (FH, EC 4.2.1.2) to form malate (Fig. 1). SDH
and FFH have been described as tumor suppressors. When
either of these genes are mutated it can lead to para-
gangliomas (53,54) and phaerochromocytomas, and in the
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case of FH, cutaneous and uterine leiomyomas and renal
cell cancer (55-57). Mutations of SDH and FH prevent the
degradation of HIF1, as they lead to accumulation of
succinate and fumarate that inhibits prolyl hydroxylase
(58,59). Prolyl hydroxylase is responsible for triggering
HIF1 degradation (58,59). Further, somatic mutations of
isocitrate dehydrogenase (IDH, 1.1.1.42) have been found
in glioblastoma cells (60). Notably, IDH mutations can
result in a novel enzymatic reaction that converts
a-ketoglutarate to 2-hydroxyglutarate (61), which may
contribute to tumorigenesis (3).

Glycolysis Inhibitors

HKII is a promising cancer drug target as it links cancer
cell glycolysis with mitochondrial-mediated apoptosis. Sev-
eral HKII inhibitors are currently being studied as potential
anti-cancer drugs, including analogues for glucose and
azole derivatives. 2-Deoxyglucose is a glucose analogue and
a competitive inhibitor of HK (Fig. 2). HK phosphorylates
2-deoxyglucose but it is not processed further by glucose 6-
phosphate isomerase. As a result, the phosphorylated 2-
deoxyglucose accumulates in the cell and competitively
inhibits HK by negative feedback. Taxol- and melphalan-
resistant cells have been shown to accumulate 2-
deoxyglucose-6-phosphate to a greater extent than sensitive
cells, which resulted in growth inhibition (62). Phase I
clinical trials have determined the safety and pharmacoki-
netic parameters of 2-deoxyglucose in prostate cancer
patients (63) (Table I). 5-Thioglucose and mannoheptulose
(64) are two other analogues of glucose that inhibit HK.

Azole derivatives such as clotrimazole or bifonazole are
traditionally used as antifungals. These compounds are also
thought to displace HK from the mitochondrial membrane
(65) (Fig. 2), having a significant effect on cell viability (65—
67) and sensitizing glioblastoma cells to radiation (67).
Although this class of drugs has a calmodulin antagonistic
action, the disassociation of HK from VDAC appears to be
independent of this function (68). Clotrimazole has anti-
tumor effects in a rat model of glioma (66).

PDH activity is negatively regulated by phosphorylation.
The phosphorylation is mediated by PDH kinase and PDH
phosphatase. PDH kinase is upregulated in cancer (47-50).
Dichloroacetate is a pyruvate mimetic that allosterically
inhibits PDH kinase (Fig. 2), allowing pyruvate to be
channeled into the TCA cycle (69). Dichloroacetate has
cytotoxic effects in a number of cancer cell lines (69-74).
Interestingly, cancer cells with defects in the electron
transport chain appear to be more sensitive to dichloroa-
cetate (72). This observation suggests that dichloroacetate
inhibition of PDH kinase leads to a greater reliance on
mitochondrial metabolism, making the cell more suscepti-
ble to compounds that disrupt oxidative phosphorylation.
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Fig. 2 Small molecule mitochondrial metabolism inhibitors in pre-clinical or clinical development for the treatment of cancer. 2-Deoxyglucose, 3-
bromopyruvate and lonidamine target HKII. Jasmonates and azole derivatives disrupt the association between HKIl and VDAC, while the organoarsenicals
GSAQO and PENAQO, retinoic acids and lonidamine target ANT. Betulinic acid and honokiol target the mitochondrial permeability transition pore, of which
VDAC and ANT are thought to be components. Dichloroacetate and AZD7545 inhibit PDHK. Rotenone and bullatacin inhibit complex | of the electron
transport chain, vitamin E analogues inhibit complex Il, benzylisothiocyanate inhibits complex ll, and resveratrol inhibits complex V. Aminooxyacetate

inhibits GPT, that functions in glutamine catabolism.

Dichloroacetate has modest anti-tumor activity in mice
(70,72,73), though a small trial of five patients with
glioblastoma showed promising results (75). Unfortunately,
the publicity of these results and the ease of access of
dichloroacetate has led to self-medication and little moti-
vation from pharmaceutical companies to take dichloroa-
cetate through clinical trials as a cancer therapy (76).
AZD7545 1s a specific inhibitor of PDH kinase (77,78)
(Fig. 2) that has been developed to treat diabetes by

Table | Clinical Development of Mitochondrial Metabolism Inhibitors

improving glucose control (79). It has potential to be used
in the treatment of cancer, although it has not been studied
as an anti-cancer agent. AZ12 and Nov3r are related
compounds to AZD7545 that also inhibit PDH kinase (78).

Oxidative Phosphorylation

Oxidative phosphorylation (also referred to as respiration)
utilizes the reducing power of NADH and FADH,

Drug Phase  Cancer Type Combination Outcome
2-deoxyglucose I supratentorial glioma radiotherapy tolerance (191)
| prostate alone doses, pharmacokinetics, etc. defined (63)
lonidamine I recurrent glioblastoma diazepam no complete or partial response (173)
multiforme
dichloroacetate glioblastoma alone safe doses identified at concentrations
relevant for inhibition of PDH kinase (75)
resveratrol | healthy, colorectal alone safe dose determined, chemo preventative (112,113)

all-trans retinoic acid high risk acute myeloid

leukemia

fludarabine and cytosine or
cytosine arabinoside,

all-trans retinoic acid made
no difference (180)

daunorubicin, and etoposide

non-acute promyelocytic
acute myeloid leukemia
acute promyelocytic

leukemia
I NSCLC
GSAO | solid tumors refractory to therapy alone
betulinic acid I dysplastic nevi alone
acivicin l'and Il NSCLC, colorectal cisplatin

daunorubicin/Ara-C/
thioguanine

compared to daunorubicin
and cytarabine induction

paclitaxel and cisplatin

no significant effect (181)

5-year disease-free survival and overall
survival rates were improved (179,192)

safe, promising anti-cancer results (193)
ongoing (194), (NCTOI 147029)
ongoing (NCT00346502)

toxicity, no benefit to patient outcome
(195-199)
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produced by the TCA cycle to reduce molecular oxygen to
water. This releases a large amount of energy in the form of
a proton gradient across the inner-mitochondrial mem-
brane, which is then utilized to synthesize ATP via ATP
synthase. The respiratory chain (the electron transport
chain) consists of 5 complexes: NADH-ubiquinone reduc-
tase (complex I), succinate-Q) reductase (complex II),
cytochrome ¢ oxidoreductase (complex III), cytochrome c
oxidase (complex IV) and ATP synthase (complex V).
Complexes I, III and IV combine the reduction of their
substrates with the movement of protons into the inter-
membrane space, creating the gradient that drives ATP
synthase (complex V) (Fig. 1).

Complex I (EC 1.6.5.3) transfers two electrons from
NADH to coenzyme (), and translocates four protons into
the inter-membrane space. Coenzyme () then carries the
electrons to Complex III. Premature electron leakage
commonly occurs at complex I and is one of the main sites
for production of reactive oxygen species (80,81). Complex
IT (EC 1.3.5.1) transfers two electrons from succinate (from
the TCA cycle) to FADH; to coenzyme Q, then coenzyme
Q) carries two protons across the membrane. Succinate
dehydrogenase, the TCA cycle enzyme, forms part of
complex II. Complex III (EC 1.10.2.2) transfers a pair of
electrons from coenzyme Q) to cytochrome ¢, and concur-
rently pumps a further four protons into the inter-
membrane space. Complex IV (also known as cytochrome
¢ oxidase, EC 1.9.3.1) catalyzes the oxidation of cyto-
chrome c. This reaction is coupled to the reduction of O, to
two molecules of water and a further two protons are
pumped into the inter-membrane space. Subunit four of
cytochrome c¢ oxidase is a regulatory subunit of complex
IV. Under hypoxic conditions, expression switches from
isoform 1 to isoform 2, allowing for optimal activity of
cytochrome ¢ oxidase (62). The final step of oxidative
phosphorylation is catalyzed by ATP synthase (complex V,
EC 3.6.3.6). ATP synthase uses the proton gradient across
the inner-mitochondrial membrane to drive the production
of ATP from ADP and orthophosphate.

All complexes of the electron transport chain have been
implicated in cancer. Decreased expression and activity has
been observed for complex I (83-85), complex II (86),
complex III (85,86), complex IV (86) and complex V (86-88).

Oxidative Phosphorylation Inhibitors

Rotenone 1s an inhibitor of complex I (Fig. 2). It 1s 1solated
from the stems and roots of several plants and is commonly
used as a natural insecticide (89). Rotenone induces
apoptosis in a variety of cancer cell lines, including breast
cancer, melanoma, leukemia, lymphoma and neuroblasto-
ma (89-91). Studies have not progressed beyond cell
culture experiments at this time.
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Bullatacin is a member of the annonaceous acetogenins
family of proteins, isolated from the fruit of Annona atemoya
(92). It inhibits the pumping action of complex I of the
electron transport chain (93) (Fig. 2). Bullatacin has
cytotoxic activity against multidrug resistant human mam-
mary adenocarcinoma MCF-7/Adr cells (94-96) and is
efficacious in ovarian and leukemia murine tumor models
(93). Toxicity was observed at doses greater than 1.4 mg/kg
in an ovarian tumor model (94).

Vitamin E analogues such as alpha-tocopheryl
succinate (alpha-TOS) can induce mitochondrial-
mediated apoptosis in tumor cells. Alpha-TOS targets
complex II, preventing binding of ubiquinone (97)
(Fig. 2). This leads to electron leakage and subsequent
generation of reactive oxygen species (97,98). Alpha-TOS
1s cytotoxic for proliferating endothelial cells (99) and
tumor cells (100) and has anti-tumor activity in mouse
breast and lung cancer models (101). In addition, dietary
vitamin E intake is inversely related to bladder cancer
incidence, which suggests a chemo-preventative action
(102).

Benzylisothiocyanate has been isolated from cruciferous
vegetables. In the breast cancer cell lines, MCF-7 and
MDA-MB-231, this compound was shown to inhibit
complex III' (Fig. 2), generating reactive oxygen species
and inducing apoptosis (103). It also has chemo-
preventative properties in liver and lung solid tumor models
in mice (104,105).

Resveratrol i1s found in grapes, belonging to the
polyphenolic phytoalexins class of compounds (106). It
binds to complex V and inhibits ATP synthesis (107,108)
(Fig. 2). Resveratrol also inhibits the action of many anti-
apoptotic proteins i vitro, including Bel-xp, (109), and has
anti-tumor and chemo-preventative actions in skin and
neuroblastoma cancer models (106,110). Derivatives of
resveratrol bound to the membrane-permeable lipophilic
triphenylphosphonium cation were developed and found to
enhance resveratrol accumulation in mitochondria and
improve selectivity for C-26 mouse colon cancer cells
(111). Resveratrol has been studied in both healthy
volunteers and colorectal cancer patients to determine
suitable dosing levels for its chemo-preventative action
(112,113) (Table I).

Mitochondrial ATP Transport

ATP synthase is closely aligned to ANT, the transporter
responsible for supplying it with ADP for the synthesis of
ATP, in a complex known as the ATP synthasome
(114,115). ANT exchanges the newly formed ATP with
spent ADP in the cytosol. There are four isoforms of ANT
in humans (116). ANTI is specific to muscle and brain
tissue, ANT2 is mostly expressed in proliferative undiffer-
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entiated cells, ANT3 is ubiquitous and ANT4 is found in
the liver, testis and brain (116,117).

ANT?2 expression is upregulated in a variety of cancers,
including hormone-sensitive cancers of the cervix, uterus
and testis, whilst ANT1 expression is repressed in a number
of cancer cell lines (43,44,118-120). The ANTs are also
thought to play a role in mitochondrial-mediated apoptosis.
ANT1 and ANT3 are pro-apoptotic (118,121,122), while
overexpression of ANT4 reduces the sensitivity of cells to
apoptotic inducers (123). There is also a link between
lonidamine efficacy and ANT2 expression, although the
mechanism of this effect is not known (119,120).

ATP 1is transported across the outer-mitochondrial
membrane by VDAC. VDAC is also permeable to small
and large ions (124) and functions in mitochondrial-
mediated apoptosis. There are three isoforms of VDAC
(125). VDACI is expressed in many tissues and its over-
expression in cells leads to an increase in apoptosis (126).
VDAC2 is found in spermatozoa (127), while VDAC3
expression has been observed in the testes (128). VDACI
expression 1is increased in a number of cancer cell lines
(129), although the reason for this is not apparent.

VDAC and ANT are thought to be components of the
mitochondrial permeability transition pore. An increase in
matrix calcium levels triggers the formation and opening of
the pore, allowing equilibration of molecules with molecu-
lar weight lower than 1.5 kDa across the inner-
mitochondrial membrane. If left unchecked, this can lead
to swelling of the inner membrane, rupture of the outer
membrane and cell death. VDAC and ANT do not appear
to be essential components of the transition pore (130,131),
although the transporters co-purify from cells (132,133) and
are thought to interact in the inner-membrane space
(134,135).

Mitochondrial ATP Transport Inhibitors

GSAO (4-(N-(S-glutathionylacetyl)amino)phenylarsonous
acid) is a tripeptide trivalent arsenical (136,137). It is a
pro-drug that is activated by y-glutamyl transpeptidase at
the cell surface to produce GCAO ((4-(N-(S-cysteinylglycy-
lacetyl)amino) phenylarsonous acid)) (138). GCAO enters
the cell via an organic ion transporter and is further
processed by dipeptidases to CAO (4-(N-(S-cysteinylacetyl)
amino) phenylarsonous acid) in the cytosol. CAO enters the
mitochondrial matrix, through an unknown transporter,
where its arsenical moiety cross-links Cys160 and Cys257
on the matrix face of ANT. This covalent interaction
inactivates the transporter, blocking ATP delivery to
VDAC-bound HKII (Fig. 2). The perturbation of ANT
also leads to partial uncoupling of oxidative phosphoryla-
tion, an increase in superoxide production and the arrest of
proliferation of the cell (136). CAO preferentially reacts

with ANT in proliferating cells, which appears to be a
consequence of the higher matrix concentrations of calcium
(136). Cytosolic levels of GCAO and CAO are controlled
by the multdrug-resistance associated protein isoforms 1
and 2 (139). These transporters are poorly expressed in
proliferating endothelial cells which provides a selectivity
for angiogenic endothelial cells i vitro and i vivo. GSAO 1is
currently being tested in a Phase I clinical trial in adults
with solid tumors refractory to standard therapy (Table I).

PENAO (4-(N-(S-penicillaminylacetyl)amino)phenylar-
sonous acid) was designed to bypass the pro-drug process-
ing and metabolism of GSAO (140). PENAO is a cysteine
mimetic of CAO. This compound accumulates in cells 85-
fold faster than GSAQO, which results in a 44-fold increased
anti-proliferative activity and a ~20-fold increased anti-
tumor efficacy in mice. In contrast to GSAO, PENAO
targets both proliferating endothelial and tumor cells.
GSAO and PENAO are equally well tolerated in rodents.
The cytostatic/cytotoxic and anti-tumor efficacy of GSAO,
therefore, has been markedly improved by constructing an
analogue of a GSAO metabolite that enters cells faster and
1s exported slower. The increased residence time of
PENAO in the cytosol correlates with its increased
mitochondprial toxicity. PENAO will enter a Phase I clinical
trial in adults with solid tumors refractory to standard
therapy in 2011.

3-Bromopyruvate is a halogenated analogue of pyruvate
that alkylates the sulthydryl groups of HK, interfering with
its action (Fig. 2). The compound inhibits the proliferation
of melanoma, colon and breast cancer cell lines in culture
(141-143) and growth of hepatocellular carcinoma tumors
in rats (144). High cytosolic glutathione levels are associated
with resistance to 3-bromopyruvate in cell culture (141). 3-
Bromopyruvate also alkylates cysteine thiols in glyceralde-
hyde 3-phosphate dehydrogenase (145) and succinate
dehydrogenase (146), so it is not specific for HK (147-149).

Jasmonates belong to a class of compounds that function
as plant stress hormones, mediating responses to mechan-
ical and infectious stresses (150). The three most commonly
studied natural forms of jasmonates are methyl jasmonate
(the most active), jasmonic acid and cis-jasmone. Methyl
jasmonate binds to HK and displaces it from VDAC (151)
(Fig. 2). Numerous studies in cancer cell lines have been
performed (150,152) and selectivity for cancer cells over
healthy cells has been observed (153). Synthetic halogenat-
ed derivatives of methyl jasmonate are more potent than
the parent compound in a variety of cancer cell lines
(154,155).

Betulinic acid (also known as bevirimat) is a pentacyclic
triterpenoid found in the outer bark of various tree species
(156). It triggers apoptosis of cells by disrupting the outer-
mitochondrial membrane (157). Bongkrekic acid, which
stabilizes the transition pore by binding to ANT (117),
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inhibits the action of betulinic acid (157,158) (Fig. 2).
Bongkrekic acid is also able to prevent mitochondrial
permeability transition following the dissociation of HK
from VDAC (159). Betulinic acid induces apoptosis of a
variety of human cancer cell lines, including doxorubicin-
resistant neuroblastoma cells (156,158,160), and has anti-
tumor activity in murine melanoma and colorectal cancer
models (161,162). The compound was well tolerated in a
phase I trial (163) and a phase II trial using betulinic acid as
an ointment for the treatment of dysplastic nevi (a mole that
has the potential to develop into melanoma) is ongoing
(Table I).

Honokiol is a compound from the magnolia tree. It has a
range of activities, including antioxidant, antithrombotic,
antibacterial and anxiolytic (164). Honokiol has two main
cellular mechanisms relevant to cancer. It blocks defective
p53 signaling and activated Ras by inhibiting phospholipase
D, and it potentiates opening of the mitochondrial
permeability transition pore by inducing the expression of
cyclophilin D (165) (Fig. 2). It is cytostatic and cytotoxic for
a variety of cancer cell lines (164,166—168). The compound
is currently being formulated using nanoparticles for
intravenous delivery (169).

Lonidamine was first reported as a possible inhibitor of
HK in 1981 (170) (Fig. 2). More recent work has suggested
that it induces mitochondrial membrane permeabilization
by a direct effect on ANT (171,172). Lonidamine has been
tested in clinical trials in breast cancer, ovarian cancer, lung

cancer, prostate adenoma and glioblastoma (173) (Table I).

Retinoic acids such as all-trans-retinoic acid, 9-cis-retinoic
acid and 13-¢s-retinoic acid bind to ANT and initiate the
mitochondrial membrane permeability transition (174)
(Fig. 2). They inhibit leukemia cell growth i vitro and solid
tumor growth w vivo (175—178). All-trans retinoic acid is the
standard of care in acute promelocytic leukemia (179)
(Table I), but provides no benefit in other forms of acute
leukemia (180-182).

Glutaminolysis

Glutamine is the most abundant amino acid (59) and is
synthesized in the body by glutamine synthetase (EC
6.3.1.2) (8,183). Its catabolism provides precursors for
nucleotide and protein biosynthesis and carbon units for
the TCA cycle in mitochondria (184). Glutamine is trans-
ported across the plasma membrane and the inner-
mitochondrial membrane by glutamine transporters. Glu-
taminases (EC 3.5.1.2) on the inner-mitochondrial mem-
brane start its catabolism. Conversion to a-ketoglutarate by
glutamate pyruvate transaminase (EC 2.6.1.15), glutamate
dehydrogenase (EG 1.4.1.2) or aspartate aminotransferase
(EC 2.6.1.1) provides carbons to the TCA cycle (Fig. 1).
Glutamine catabolism in tumor cells is at least 10-fold that
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of any other amino acid (Fig. 1b) (184,185). In particular,
pancreatic carcinoma, glioblastoma, acute myelogenous
leukemia and small cell lung cancer cells are sensitive to
glutamine starvation (185). Expression of the oncogene c-
Myc in glioblastoma cells leads to ‘glutamine addiction’,
such that their survival is linked to glutamine catabolism
(16,186,187). c-Myc is expressed in more than 80% of
gliomas and correlates with the grade of malignancy, with
low expression in Grade I and II and high expression in
Grade III and IV tumours. c-Myc activates the transcrip-
tion of genes required for glutamine uptake and catabolism.
Glutamine is also thought to supply nitrogen for the
synthesis of amino acids in cancer cells when demand
outstrips supply (188).

Glutaminolysis Inhibitors

Aminooxyacetate Is a transaminase inhibitor that targets
glutamate pyruvate transaminase, which converts gluta-
mate to a-ketoglutarate (185) (Fig. 2). In melanoma cell
lines, aminooxyacetate sensitizes cells to TRAIL (tumor
necrosis factor-related apoptosis inducing-ligand)-induced
cell death (189). It inhibits proliferation of MDA-MB-231
breast cancer and SF188 glioblastoma cell lines (16,190)
and suppresses growth of MDA-MB-231 xenograft tumors
in mice (16,190).

Glutamine analogues such as 6-diazo-5-oxo-L-norleu-
cine, azaserine and acivicin have been explored as possible
therapies for cancer. Their development has stalled,
though, because of side-effects such as neurotoxicity,
gastrointestinal toxicity and myelosuppression (185)
(Table I). Inhibiting glutaminolysis at other steps has been
explored but none have proved successful to date.

CONCLUSION

Mitochondria play a central role in both healthy and
cancer cell metabolism. In cancer cells, this organelle
coordinates catabolism of glucose and glutamine across
the cytosol. The products of this catabolism fuel the high
demand for precursors for protein, DNA and lipid
synthesis. Targeting cancer cell mitochondrial metabolism
has potential for the treatment of the disease and a number
of small-molecule inhibitors are in pre-clinical and clinical
development. In our opinion, the most promising mito-
chondrial target is the HK-VDAC-ANT complex that
spans the outer- and inner-mitochondrial membranes. This
complex links glycolysis, oxidative phosphorylation and
mitochondrial-mediated apoptosis, so its perturbation
effects metabolism generally as well as cell viability. Peptide
arsenicals that inactivate ANT in proliferating cells show
particular promise, as do the inhibitors of HK. The next
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decade should see great strides in our understanding of

mitochondrial metabolism in cancer cells and how we can

selectively target this process for cancer treatment.
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