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Estrogen is an essential intrafollicular modulator stimulat-
ing granulosa cell proliferation and facilitating the actions
of follicle-stimulating hormone (FSH) and luteinizing hor-
mone (LH) on ovarian cells.1 In response to FSH, granulosa
cells aromatize androgens to estrogens (primarily estradi-
ol). The actions of estrogen are transduced by estrogen
receptors (ERs) ERα and ERβ. ERβ was not identified until
1996,2,3 at which point there was a resurgence of interest
in estrogen action throughout the body. Knockout mouse
models were developed that either eliminated one or
both of the receptors (ERα and ERβ) or prevented estrogen
production (aromatase knockout mouse [ArKO]).4–11 ERα
and ERβ exhibit specific tissue localization and levels of
expression. ERβ is expressed in high levels in the ovary and
prostate.12 High levels of ERα are also present in the ovary,
epididymis, testis, and pituitary.12 Despite interest in the
role of ERβ in bone, the cardiovascular system, and in
inflammation (summarized in a review by Harris),
its role in the ovary has received very little attention.13

Here we review what is currently known about ERβ
action in the ovary, in both health and disease
states.

Estrogen Receptors

ERα and ERβ share 95% amino acid homology in the DNA
binding domain and 55% homology in the ligand-binding
domain (LBD).2 This level of identity is also seen between the
LBDs of the androgen, glucocorticoid, mineralocorticoid, and
progesterone receptors (PRs), and it is associated with both
unique and shared ligand binding. The N-terminal, hinge, and
C-terminal regions of the ER have the greatest sequence
diversity.2

Multiple isoforms of the ERβ subtype have now been
described,14–19 although it is not clear if these forms are all
biologically active. Chu and colleagues reported the existence
of a 54 nucleotide insert in the LBD of rat ERβ.14 Termed ER-
β2, this isoform, present only in rodents,14,20 acts as a
dominant negative regulator of ERβ- and ERα-mediated
transcription.21 Although this isoform has not been detected
in humans, shortened transcripts and alternatively spliced
forms of ERβ have been reported in normal ovary and ovarian
tumors.21–23 These forms, designated ERβ1, ERβ2 (also
known as ERβ cx), ERβ3, ERβ4, and ERβ5,17,23,24 each produce
a full-length transcript. Initially it was thought that ERβ4 and
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Abstract Estrogen is essential for folliculogenesis with independent roles attributed to each of the
two estrogen receptors (ERs). ERβ, expressed predominantly by the ovarian granulosa
cells, is required for antrum formation, preovulatory follicle maturation, expression of
genes involved in ovarian differentiation (luteinizing hormone, aromatase, etc.), and
follicle rupture during ovulation. Ovulatory dysfunction is associated with polymor-
phisms of the ERβ gene, and endocrine disruptors that selectively activate ERβ cause
reproductive dysfunction and impairment fertility. ERβmay also exhibit antitumorigenic
properties, with a decline in ERβ levels in epithelial ovarian cancers associated withmore
severe disease and poor prognosis. In this review, we examine the models that have
been used to elucidate the roles ERβ plays in the ovary and consider the clinical
consequences of altered ERβ expression or inappropriate activation of ERβ signaling.
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ERβ5 existed only as truncated transcripts, but this has
proven not to be the case.17,25

The affinity of ligands for the respective receptor subtypes
and isoforms differs.15 The response to estrogen in a given
tissue is defined by the ER expressed and the matrix of ER-
interacting proteins present within the cells. These co-regu-
latorymoleculesmay influence the response in both a ligand-
and promoter-dependent context, which in turn may be
influenced by other signaling pathways. Nuclear hormone
receptors interact with co-regulatory proteins, either coac-
tivators that enhance transcription or corepressors that re-
press transcription. ERs contain two activation functions
(AFs) that interact with coactivators. AF-1, which is ligand
independent, lies within the N-terminal domain; AF-2 lies in
the LBD, and its activity depends on ligand-induced confor-
mational changes. The relative contribution of each AF is cell
and promoter dependent. Transcription of the human ERβ
genes occurs from at least two promoters, 0N and 0K,19 with
the same transcript produced.

Signaling Via Estrogen Receptor-β
ERs mediate transcription as dimers. Both homodimers and
heterodimers of the ER activate transcription of reporter gene
constructs containing estrogen response elements.15,26 It has
been suggested that ERβ activity is compromised in the
absence of ERα,4 further supporting the heterodimer as the
functional form of ERs. Studies in other tissues suggest that
ERβ may antagonize/oppose the effects of ERα, thereby
serving to limit cellular proliferation, promote differentiation
(luteinization), and modulate apoptosis (atresia).27 Although
a biological role for ERβ2 has not yet been elucidated, the
studies of Maruyama et al suggested that ER-β2 may be a
negative regulator of estrogen action, given that it dose
dependently suppressed ERα and ERβ1-mediated transcrip-
tional activation.21 Thus the formation of dimers containing
ERβ2 may well induce very different effects on gene expres-
sion relative to those induced by receptor dimers that do not
contain ERβ2.

ERβ plays a direct role in follicle development and is
required for antrum formation and preovulatory follicle
maturation.27,28 Ovulatory defects have been linked with
polymorphisms of human ERβ.29 Hemorrhagic and cystic
follicles of ERα and LHβ C-terminal peptide transgenic mice
(mice that express elevated levels of LH in the absence of ERβ)
require ERβ for development.30 Polyovular follicles were
induced by both ERα and ERβ agonists in neonatal mice.31

However, mice lacking ERβ do not produce polyovular fol-
licles when challenged with genistein or diethylstilbestrol
(DES),32,33 whereas ERα knockout mice do, suggesting that
ERβ is directly involved in polyovular follicle formation. In
human corpora lutea (CL), estrogenic activity is mediated by
ERβ with both protein and mRNA localized to luteal cells,
perivascular cells, and fibroblasts within the CL.34 ERβ1 and
ERβ2 mRNAs were differentially expressed across the luteal
phasewith ERβ1maximally expressed in themidluteal phase
and ERβ2 maximally expressed in the early luteal phase.35

Co-localization of the two forms was noted but not
obligatory.

Localization and Regulation of Estrogen Receptor-β
ERβ is present in the ovaries of a wide number of species,
including mouse, rat, rabbit, sheep, cow, baboon, hamster,
pig, and human.4,20,36–45 Whereas ERβ is predominantly
expressed by the granulosa cells, theca cells, surface epitheli-
um, and CL, although oocytes have also been reported to
express the receptor.34,36,39,46–50

Definitive information on the expression of the respective
ER mRNAs and proteins in granulosa cells of different follicle
sizes is lacking. In situ hybridization and reverse transcriptase
polymerase chain reaction studies in the rat indicate there is
more ERβ than ERα mRNA in the ovary, and further analysis
revealed more ERβ2 than ERβ1 in ovarian RNA collected from
postnatal rats.37Messenger RNA transcripts for ERα and ERβ1
and ERβ2 are present in granulosa cells of follicles with at
most two to three layers of granulosa cells, and ERβ1 and
ERβ2 proteins are present in rat granulosa cells.27,36,51,52

A convergence between gonadotropin signaling and ERβ-
mediated transcription in the ovary has been noted, unlike
ERα. Gonadotropins are important regulators of ovarian
function, and thus it makes sense for them to regulate ERβ
expression if indeed ERβ is important for ovarian function.
The LH surge was found to downregulate ERβ mRNA in the
ovaries of rats and hamsters, and gonadotropin-induced
cofactor-4 induced by FSH coactivated ERβ in granulosa
cells.36,38,53

Genes Regulated by Estrogen Receptor-β
Studies to identify genes regulated by ERβ are difficult to find
for normal tissues; the few undertaken to date have used
cancer cell lines.19 Chang and colleagues investigated the
effect of ERβ on gene regulation by MCF-7 cells expressing
ERα.54 Microarray analyses revealed that genes regulating
signal transduction pathways, cell cycle progression, and
apoptosis were modulated by ERβ. These included members
of the transforming growth factor-β superfamily (which are
normally associated with suppression of breast cancer cell
growth), class 3 and 4 semaphorin pathways, FOXM1 (mem-
ber of the forkhead box transcription factor family, only
expressed in proliferating cells), CDC25A (cell division cycle
25 homologue A), E2F1 (transcription factor), survivin (mem-
ber of the inhibitor of apoptosis protein family that acts as a
suppressor of apoptosis and plays a central role in cell
division), and p21WAF1 (cyclin-dependent kinase inhibi-
tor).54 Proliferation of MCF-7 cells declined when ERβ was
present, consistent with the repression of FOXM1, CDC25A,
E2F1, and survivinmRNAs and the upregulation of p21WAF1,
an inhibitor of cell proliferation and SEMA3B, a tumor
suppressor.54

In the presence of estradiol, ERβ enhanced the repression
of thrombospondin 1, reduced the repression of integrin 6
and bonemorphogenetic protein-7, and downregulated stro-
mal cell derived factor (SDF)-1.54,55 SDF-1, which has previ-
ously been shown to act as an autocrine growth factor for
breast cancer cell, has also interestingly been shown to
interfere with semaphoring signaling.54,55 We are currently
undertaking microarray analyses of our granulosa cell tumor
cell lines and hope in the near future to report on genes
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regulated by ERβ in reproductive cells. These recent studies
make clear that it is the relative levels of ERβ and ERα in a cell
line/tissue that will determine its response to estrogen.

Estrogen Receptor-β Knockout Mice
Despite normal levels of gonadotropins and ovaries that
contain follicles of all stages of development and CL, ERβ
knockout mice (βERKO) are subfertile, producing fewer pups
and litters and yielding fewer oocytes following superovula-
tion.5,7,9,56,57 Investigators have suggested that a disruption
in communication between the theca and granulosa cell
layers leads to inhibition of vascularization, preventing the
increase in permeability and hyperemia that facilitates ex-
pulsion of the ovum.58 Wedge resection of ERβ knockout
ovaries, with its presumed effects on improving vasculariza-
tion, restored fertility to 100%.58

Furthermore, the βERKO mouse displays a granulosa cell–
specific phenotype.5Ovaries of the βERKOmice contain fewer
large antral follicles and CL, and apoptosis in large follicles is
increased.27 It is clear that ERβ is important for follicle
maturation from the antral stage of development to follicle
rupture.27 ERβ also appears to play a role in the expression of
genes that are important for ovarian differentiation, with
βERKO mice demonstrating decreased aromatase, LH recep-
tor, and prostaglandin synthase (Ptgs)2 mRNA levels and
increased androgen receptor expression within antral fol-
licles.27,59 Follicles from these mice also produce significantly
less estradiol compared with wild-type mice in vitro, indicat-
ing an attenuated response to FSH.57 ERβ recently was shown
to be required by preovulatory follicles for the production of
cyclic adenosine monophosphate (cAMP), and inadequate
levels of cAMPmay account for the reduced levels of estradiol
produced by these follicles.60,61

It is apparent from the ERα knockout (ERKO) and βERKO
ovarian phenotypes that ERα and ERβ have different roles to
play in folliculogenesis. It has been hypothesized that the
proliferative action of estrogen is transmitted preferentially
via ERα, whereas the differentiating effects of estrogen are
mediated principally by ERβ.62 This hypothesis is supported
by the differentiation of granulosa cells intomale-type Sertoli
cells in the estrogen-deficient ArKO.63 These Sertoli cells
disappear from the ovaries of mice treated with estradiol or
phytoestrogens, principally genistein,63 an ERβ-selective li-
gand.26 However, interpreting the consequences of ERα and
ERβ deletion in thesemodels is complicated by the inability of
these receptors to form heterodimers of ERα and ERβ. Ho-
modimers of these transcription factors may induce very
different effects on gene expression compared with ER
heterodimers.

Polycystic Ovarian Syndrome

Polycystic ovary syndrome (PCOS) is a common endocrine
disorder characterized by anovulation, elevated levels of
androgen, hirsutism, and insulin resistance.64,65 Folliculo-
genesis is arrested at the antral stage of development, and
it is the accumulation of these follicles that gives the ovary its
characteristic morphology of a necklace-like pattern of fol-

licles in the periphery. Because estrogen has been shown to be
essential for folliculogenesis beyond the antral stage, it is
perhaps not surprising that ERβ mRNA and protein are
reduced in granulosa cells and theca cells from PCOS pa-
tients.11,66 We hypothesized that changes in the ratio of ERβ
το ERα may result in abnormal follicular development. Simi-
larly, in a rodent model of PCOS, levels of ERβ protein were
decreased in the granulosa layers of cystic follicles.67 Idio-
pathic ovulatory dysfunction has been found to be associated
with a G/A (1730) polymorphism in ERβ.2. Given that ovula-
tory dysfunction is a key feature of PCOS, one group investi-
gated a cohort of PCOS patients to determine if there was an
association with this polymorphism.68 They reported signifi-
cant differences in the genotype distribution and allelic
frequencies between controls and PCOS patients that sup-
ported a correlation with the G/A polymorphism.68 To date,
the underlying mechanism has not been established.

Ovarian Cancer

Most ovarian cancers are epithelial in origin. Preliminary
studies suggest that ERβ levels (protein and mRNA) in epi-
thelial ovarian cancer decline relative to levels in normal
ovary.69–72 Overexpressing ERβ in an ovarian adenocarcino-
ma cancer cell line PEO14 led to a 50% reduction in prolifer-
ative capacity.70 The prognostic significance of ER expression
by ovarian cancers has received little attention, although one
study reported a correlation between levels of ERβ expression
and cancer disease stage, with levels declining with increased
severity of disease.73 In addition, breast cancer studies indi-
cate that tumors positive for ERβ respond better to endocrine
therapy.74 Thus loss of ERβ expression may be a feature of
malignant transformation.

An antitumoral role of ERβ in SK-OV-3 ovarian cancer cells
that do not express functional ERα was reported.75 Reduced
proliferation, inhibited motility, and increased apoptosis of
SK-OV-3 cells overexpressing ERβ1 were noted.75 Exon-de-
leted ERβ1 splice variants ERβ-δ125 and ERβ-δ1256, which
lack the AF-1 domain and have deletions in their DNA and
LBDs, had no effect on proliferation or apoptosis but partly
inhibited motility of these cells.75 Genes associated with
these physiological changes include an increase in p21
(WAF1), a cell cycle inhibitor, downregulation of cyclin A2,
an estrogen-responsive cell cycle regulator, and an increase in
fibullin-1c, an extracellular matrix protein overexpressed in
epithelial ovarian cancers and involved in motility.76,77 ERβ
activity may be reduced as a result of DNA methylation.19

Studies investigating epithelial ovarian carcinoma revealed
that human promoter 0N was significantly methylated in
ovarian cancer cell lines and tissues and that this methylation
correlated with decreases in the expression of exon 0N, ERβ1,
ERβ2, and ERβ4.78 Furthermore, treatment of ovarian cancer
cells in vitro with demethylating agents has been shown to
restore ERβ activity and inhibit growth, suggesting that ERβ
activity is antitumorigenic.79

GCTs account for �5% of all ovarian cancers. GCT and GCT-
derived cell lines abundantly express ERβ, and their molecu-
lar phenotype is similar to preovulatory granulosa cells.80–83
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As in other endocrine tumors, ERβ may be of pathogenetic
significance. The steroid receptor coactivators SRC-1, -2 and
-3 and the co-repressors NcoR and SMRT are also expressed
by GCT.81 Despite ERβ expression and estradiol binding,
when GCT cell lines were transfected with estrogen-respon-
sive reporter genes and treated with estradiol, there was
no response.84 The activation state of several signaling
pathways in these lines was examined with both nuclear
factor (NF)κB and AP-1 signaling found to be constitutively
active. When the NFκB activity is inhibited by BAY 11–7082,
ligand-dependent steroid receptor-mediated transactivation
occurs for both exogenous and endogenous ERβ.84 Thus ERβ
signaling in GCT cell lines is transrepressed via the NFκB
pathway.

Few studies have examined NFκB signaling in normal
granulosa cells. We have localized p65 (RelA), a member of
the NFκB family to granulosa cells, theca cells, oocytes, and
luteal cells of adult rat ovary with both cytoplasmic and
nuclear staining evident. Wang et al reported that the NFκB
pathway mediates the FSH-induced expression of X-linked
inhibitor of apoptosis (XIAP) by granulosa cells.85 These data
are consistent with a role for NFκB signaling in granulosa cells
and indicate that ERβ signaling may be modulated by NFκB,
perhaps through mutual transrepression. In malignant gran-
ulosa cells, inhibition of ERβ signaling by NFκB may be
enhanced by cyclin D2.84 Together, these data suggest that
in both normal granulosa cell proliferation and inmalignancy
(GCT), the action of ERβ is inhibited by pro-proliferative
signaling pathways, arguing that its role may be primarily
to inhibit proliferation and/or promote differentiation. In GCT
this may contribute to the pathogenesis by interrupting part
of an autocrine loop that contributes to limiting the FSH-like
growth stimulation.86

Environmental Estrogens

Ovarian-derived estrogens are not the only compounds that
can activate ER. Phytoestrogens are plant compounds with
intrinsic estrogen-like biological activity mainly due to the
presence of a phenolic A ring, which is crucial for receptor
binding.87,88 The two major classes of phytoestrogens are
lignans and isoflavones. Soy protein contains the isoflavones
genistein and diadzein.89 Phytoestrogens are believed to
signal predominantly via ERβ, and genistein in particular
has a 20-fold higher binding affinity for ERβ compared with
ERα.12,90–92 Feeding estrogen-depleted ArKO mice diets con-
taining either soy or genistein in part ameliorated the repro-
ductive phenotype of female mice.93 Ovarian and uterine
weights increased, although not to wild-type levels, and
hemorrhagic cysts disappeared with the addition of genis-
tein.93 These effects of genistein are thought to be mediated
via ERβ, which is supported by the identification of ERβ in the
uterus and evidence that estrogen is directly responsible for
the development of hemorrhagic cysts (and not elevated LH
levels).30,93–97 Adverse effects of genistein on rodent repro-
ductive function have also been reported, notably reduced
fertility, the formation of polyovular follicles, and altered
estrous cycles.32,98 The doses of genistein given neonatally

to mice in these studies were high, although environmentally
relevant, and led to the manifestation of reproductive abnor-
malities in adult life.99

Exposure of adult females to estrogen either via the
environment or clinically can have consequences for repro-
ductive function. Adult rats treated with estradiol valerate
had abnormal estrus cycles, and the ovaries contained re-
duced numbers of CL, developed follicular cysts, and theca cell
hyperplasia, and there was an increase in apoptosis of gran-
ulosa cells from primary and secondary follicles.100 ERβ and
PR proteins expressed by granulosa cells declined in follicles
larger than secondary follicles, suggesting abnormal differ-
entiation of the granulosa cells.100

Women exposed to endocrine-disrupting chemicals have
impaired fertility, irregular menstrual cycles, and experience
pregnancy loss.101,102 Methoxychlor (MXC), an organochlo-
rine pesticide with estrogenic activity mediated primarily via
ERβ, caused ovarian dysfunction in the adult rodent following
exposure to rats during the fetal or neonatal period.12,103

Follicle composition was altered with more preantral and
early antral follicles present and fewer CL.104 ERβ expression
declined, and there was reduced expression of LH receptor
and P450SCC mRNAs. Accelerated entry into puberty and to
first estrus, irregular cyclicity, and reduced litter sizes were
also reported.105 The bisphenol demethylated form HPTE is
believed to be responsible for the estrogenic activity of
MXC.106 HPTE analogs act as ERα agonists and ERβ antago-
nists in a range of cell lines.107,108 ERβ was found to be
hypermethylated (i.e., inactivated), whereas ERα was not.103

Bisphenol A (BPA) exposure results from interactions with
polycarbonate plastics or epoxy resins in food packaging.109

BPA acts as an agonist of estrogen via ERβ, whereas it acts as
both an agonist and antagonist in some cell types via ERα. The
effect of BPA is likely to be determined on a tissue-specific
basis.108,110 Neonatal exposure to DES or BPA induces anov-
ulation and persistent estrus in female rodents and induces
polyovular follicles.31,111–113 The observed anovulation and
induced estrus is thought to be mediated via ERα, given that
diarylpropionitrile, an ERβ selective agonist, had no effect on
these parameters.31

Resveratrol (RES), a phytoestrogen found in grapes, binds
equally to ERα and ERβ.114 RES decreased body weight and
induced ovarian hypertrophy potentially via ERβ in gonadally
intact rats. RES-liganded ERβ induced significantly higher
levels of transcriptional activity than estradiol-liganded ERβ,
suggesting that tissues expressing ERβ will be more tran-
scriptionally active in response to RES than those expressing
ERα.115

Conclusion

ERβ plays an essential role in ovarian function; changes in
expression or activation of ERβ may have clinical consequen-
ces that take the form of infertility or cancer. Future studies
need to elucidate the structure of the physiologically active
dimer, identify genes specifically regulated by ERβ in the
ovary, and address the role of coactivators and corepressors in
ERβ signaling.
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