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Statins, prescribed widely for primary and
secondary prevention of cardiovascular disease
(CVD),1,2 have been recommended for ex-
panded use in apparently healthy individuals at
risk for CVD.3 On February 8, 2010 the US
Food and Drug Administration approved
rosuvastatin (Crestor) for

reducing the likelihood of a heart attack or stroke
or the need for a procedure to treat blocked or
narrowed arteries in patients who have never
been told they have heart disease but are
nevertheless at increased risk of a cardiac event.3

The target population included men older
than 50 years and women older than 60 years
with elevated levels of high-sensitivity
C-reactive protein and an additional CVD risk
factor such as smoking, hypertension, a family
history of premature CVD, or low levels of
high-density lipoprotein (HDL) cholesterol.4

Computational studies concluded that
a “treat-all” approach to CVD prevention is
cost-effective.5---7 However, misgivings over
widespread statin use have been expressed on
the basis of overall societal impact, including
cost and toxicity, especially with the extension
of treatment to children.8---10 The wholesale cost
of a 40-milligram rosuvastatin tablet at a local
pharmacy recently was $4.22. Side effects of
statins involve primarily liver11 and muscle12

damage. Statins also have been associated with
risk of diabetes,13 nonmelanotic skin cancer,14

and adverse drug interactions.15---17 Although
statins are of proven efficacy,1,2 CVD remains
a major public health problem beckoning fur-
ther innovative approaches to prevention and
treatment.18

The clinical benefits of statins relate to their
ability to reduce cholesterol levels by inhibiting
the rate-limiting cholesterol biosynthetic en-
zyme 3-hydroxy-3-methylglutaryl-CoA reduc-
tase.1,2 However, drugs other than statins that
effectively lower lipids have not improved
clinical outcomes.19 Statins are effective in in-
dividuals with normal lipid levels1,2 exhibiting
pleiotropic properties unrelated to lipid

reduction.20,21 These properties include stim-
ulation of new blood vessel22 and bone for-
mation23 and the reduction of inflammation
and oxidative stress.24---35

Mascitelli and Goldstein provided evidence
that the beneficial effects of statins may result
from their ability to favorably alter iron ho-
meostasis.36 Pathologic cellular iron retention
has been implicated in systemic oxidative
stress, vascular inflammation, and atherogene-
sis. Statins reduce ferritin levels in patients with
advanced CVD,37---39 renal disease,40 and di-
abetes.41 Data from a randomized trial of iron
(ferritin) reduction (the Iron and Atherosclero-
sis Study [FeAST]) in participants with ad-
vanced peripheral arterial disease (PAD)
showed significant improvement in all-cause
mortality and combined death plus nonfatal
myocardial infarction and stroke with iron
reduction.42 There is evidence suggesting that
iron reduction may provide an alternative to
statins for reducing inflammation associated
with atherosclerosis.

METHODS

The data we collected prospectively from
FeAST allowed us to compare the effects of

HDL/low-density lipoprotein (LDL) ratios versus
those of ferritin levels (both randomization vari-
ables) on clinical outcomes. We searched FeAST
data to test our hypothesis that clinical benefits of
statins might be correlated with effects on iron
homeostasis rather than cholesterol levels.

The Veterans Affairs Cooperative Studies
Program supported FeAST, a prospective, ran-
domized, controlled, single-blind clinical trial of
iron reduction by graded phlebotomy.42,43 We
tested the hypothesis that improved clinical
outcomes might be achieved by reducing iron
stores, represented by the serum ferritin, to
levels typical of children and premenopausal
women (about 25---50 ng/mL).44 The consoli-
dated standards of reporting trials diagram,
study design, informed consent procedures, and
other methodological details have been de-
scribed in detail elsewhere.42,43 The majority of
the 1277 participants (average age = 67 years)
were male, and all participants were patients
with PAD who were cancer-free on entry.42,43

We used the entry ferritin level to calculate the
amount of blood to be removed to target
a trough ferritin level of about 25 nanograms
per milliliter in participants randomized to iron
reduction. We measured ferritin levels and
HDL/LDL ratios (both were randomization
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variables)43 in all participants at 6-month fol-
low-up visits. We used 6-month ferritin levels to
calculate the amount of blood to be removed to
maintain the targeted reduced iron status in
patients randomized to iron reduction.

We subjected the effects of variables of in-
terest on the primary end point, all-cause mor-
tality, to intent-to-treat analysis.42,43 When
FeAST began, statins were increasingly becom-
ing the standard of care treatment of all patients
with PAD. Although not a randomization vari-
able, we tracked statin use prospectively over
the 6-year study period.42,43 These study design
features provided a unique opportunity to ex-
plore interactions between statin use, HDL/LDL
ratios, and ferritin levels during a 6-year period.

We designed FeAST to have an 85% power
to detect a 30% decrease in the primary out-
come with iron reduction.43 We used time-to-
event45 curves to describe the timing of the
primary end point during follow-up.45 Because
mean follow-up ferritin levels were not normally
distributed, we used the median of mean
follow-up ferritin level values. We calculated the
mean along with the SD for continuous vari-
ables. We used the unadjusted Cox proportional
hazards regression model46 to compute hazard
ratios (HRs) and 95% confidence intervals (CIs).
To describe the effect of mean follow-up HDL/
LDL ratios (or mean follow-up ferritin levels) on
the primary end point, we plotted the log-relative
hazards from the Cox proportional hazards
model. We compared other types of categorical
and continuous variables using the v2 test or
t test, respectively. We used univariate linear
regression analyses to test the relationship
between continuous variables. We considered
differences of P< .05 statistically significant.

RESULTS

Statins were used at entry by 59.0% of
participants.43 Mean ferritin levels at entry were
significantly lower in patients taking statins
(117.53 ng/mL; SD= 80.07) compared with
patients not taking statins (128.65 ng/mL; SD=
86.39; P= .037).38,39 Statin use at entry was
significantly more frequent in participants ran-
domized to control, 62.6%, than in partic-
ipants randomized to iron reduction, 56.0%
(P= .01).43 The mean HDL/LDL ratio at entry
in patients not receiving statins was 0.41 (SD =
0.28), whereas the mean HDL/LDL ratio in

patients receiving statins was, as expected, sig-
nificantly higher at 0.46 (SD= 0.20; P< .001).
Linear regression analysis showed no relation-
ship between ferritin levels and HDL/LDL ratio
at entry for the total cohort (P= .83), for statin
users (P= .69), or for participants not receiving
statins (P= .75). Statin use tracked at 6-month
follow-up visits increased over time and again
occurred more frequently in control partici-
pants, 84.2%, than in iron reduction partici-
pants, 79.4% (P= .031). Statin use was
recorded at 72.7% of visits of control partici-
pants and 66.5% of visits of iron reduction
participants (P= .011). Increasing statin pre-
scriptions over time for all PAD patients likely
explains the observation that the mean
follow-up HDL/LDL ratios for control (0.45;
SD= 0.20) and iron reduction (0.46; SD=
0.18) participants approached the ratios ob-
served in statin users (0.46; SD= 0.20) at entry.

Iron reduction by phlebotomy significantly
lowered mean follow-up ferritin level
(P< .001).42,43 As found for entry values,
linear regression analysis showed no relation-
ship between mean follow-up HDL/LDL ratios
and mean follow-up ferritin levels either for all

participants combined (P= .89; Figure 1) or for
participants randomized to iron reduction
(P= .58). Using linear regression analysis, we
noted a significant association between mean
follow-up ferritin level and the log-relative
hazard for all-cause mortality as described
previously for the entire study cohort
(P= .037) as well as for participants random-
ized to iron reduction (P= .028).42

By contrast, from the Cox proportional hazard
regression model, we did not find a relationship
between the mean follow-up HDL/LDL ratios
versus the log-relative hazard for all-cause mor-
tality for the entire cohort (HR= 1.01; 95%
CI = 0.89, 1.16; P= .84; Figure 2). Previous
Kaplan---Meier analysis of mortality for the entire
study cohort comparing patients having mean
follow-up ferritin level above versus below the
median of the means also showed significantly
improved survival for participants with lower
ferritin levels (P= .003).42 Kaplan---Meier anal-
ysis of mean follow-up HDL/LDL ratios com-
paring patients having ratios above versus below
the median of the means showed no effect of
increasing mean follow-up HDL/LDL ratio on
mortality (Figure 3).

Note. HDL = high-density lipoprotein; LDL = low-density lipoprotein. There was no association between mean follow-up ferritin

levels and mean follow-up HDL/LDL ratios (P = .89).

FIGURE 1—Linear regression analysis for the overall cohort (n = 1277): the Iron and

Atherosclerosis Study (FeAST), Multiple US Veterans Administration Centers, 1999–2005.
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DISCUSSION

We found that improved cholesterol frac-
tions and reduced ferritin levels with statin
treatment appear to occur by noninteracting
mechanisms (Figure 1). Reduced ferritin levels
related significantly to improved outcomes in

FeAST,42 whereas improved HDL/LDL ratios
had no effect on outcomes (Figures 2 and 3).
To some extent, statin use during this trial may
have contributed to outcomes; however, con-
trol participants would likely have benefitted
more because they received statins significantly
more frequently than did iron reduction

participants. Improved outcomes with iron re-
duction regardless of statin use42 suggest that
iron reduction rather than altered lipid status
was the more powerful—or possibly the sole—
contributor to improved outcomes in FeAST. It
also seems likely that statin benefits relate, at
least in part, to reduction of iron-catalyzed
oxidative stress and inflammation rather than
to improved lipid status.25---28,47---53

We compared effects on clinical outcomes of
follow-up levels of cholesterol fractions versus
ferritin levels42,43 and found that reduction of
iron stores improved outcomes whereas im-
provement of cholesterol levels over time did
not. Favorable effects of statins on iron ho-
meostasis suggested the existence of a relation-
ship, a statin---iron nexus, possibly accounting
for statin benefits in the absence of hyperlip-
idemia.36 The existence of this relationship
appears to be supported by basic, pathophysi-
ologic, and epidemiological observations as
well as by clinical trial data.

Statins, Iron Homeostasis,

and Inflammation

Statins may improve CVD outcomes by
correcting abnormal cellular iron homeostasis
through the induction of heme oxygenase
(HO)-1 and inhibition of hepcidin expression.36

The rate-controlling enzyme of heme catabo-
lism, HO-1, counteracts oxidative endothelial
damage leading to the inception and progres-
sion of atherosclerosis.54---56 HO-1---mediated
heme degradation is key to mobilization and
extrusion of macrophage iron. HO-1 inhibition
results in cellular loading of redox-active iron.56

An extensive literature shows that the anti-
inflammatory properties of statins result from
their ability to induce HO-1 expression.47---53

Statins may be effective in CVD in part because
they increase HO-1 expression47---53 to protect
arteries from further oxidative damage by mobi-
lizing and removing plaque iron.57

Hepcidin, the key hormonal regulator of iron
distribution, binds to the cell membrane iron
export protein, ferroportin, causing internali-
zation and degradation of the hepcidin---ferro-
portin complex, resulting in macrophage iron
retention.58 Reduced hepcidin levels enhance
iron export, thus reducing macrophage iron.58

Foam cell formation and subsequent athero-
sclerosis require retention of macrophage
iron and cholesterol.59---62 Patients at risk for

Note. CI = confidence interval; HDL = high-density lipoprotein; HR = hazard ratio; LDL = low-density lipoprotein. HR = 1.01

(95% CI = 0.89, 1.16; P = .84).

FIGURE 2—Mean follow-up HDL/LDL ratio and log-relative hazard for all-cause mortality for

the overall cohort (n = 1277): the Iron and Atherosclerosis Study (FeAST), Multiple US

Veterans Administration Centers, 1999–2005.

Note. HDL = high-density lipoprotein; LDL = low-density lipoprotein. There was no difference between patients having mean

follow-up HDL/LDL ratios above vs below the median of the means for the cohort (hazard ratio = 0.97; 95% confidence

interval = 0.66, 1.41; P = .857).

FIGURE 3—Kaplan–Meier analysis for all-cause mortality in the overall cohort (n = 1277):

the Iron and Atherosclerosis Study (FeAST), Multiple US Veterans Administration Centers,

1999–2005.
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vascular disease express elevated hepcidin
levels with increased macrophage iron; both
hepcidin and macrophage iron levels are asso-
ciated with the presence of carotid plaques.63

Pharmacologic inhibition of hepcidin experi-
mentally also enhances efflux of macrophage
cholesterol and iron to inhibit foam cell for-
mation and atherosclerosis.64 Hepcidin over-
expression promotes plaque destabilization
and increased inflammatory cytokine release,
intracellular lipid and iron accumulation, oxi-
dative stress, and macrophage apoptosis in an
experimental model of accelerated atheroscle-
rosis.65 Adverse effects of hepcidin can be
negated by blocking hepcidin expression as
well as by iron chelation.65 Statins reduced
hepcidin levels,66 whereas iron administration
increased hepcidin levels.67

Numerous studies have shown that iron in
physiologic excess promotes oxidative
stress,30---35 which is inhibited by statins.24---28

Statins exert antioxidant and anti-inflammatory
effects by inhibiting the generation of reactive
oxygen species.4,25---28,68,69 Iron excess cata-
lyzes reactive oxygen species production30---32

and is both pro-oxidant and proinflamma-
tory.30---32,60,61,70---74 Excess iron is implicated
in the pleiotropic effects of statins, including
regulation of angiogenesis,75 microvascular
function,76 bone formation and dissolution,77

lipid oxidation,78 and C-reactive protein
levels.37---39 Statins inhibit experimental ath-
erosclerosis,79 whereas iron administration in-
creases69 and iron chelation inhibits80 experi-
mental atherosclerosis. Macrophage cholesterol
uptake and retention are cardinal features of
atherogenesis,81 whereas enhanced cholesterol
efflux reverses atherosclerosis.82 Statins en-
hance macrophage cholesterol efflux83---86 and
inhibit foam cell formation.59 By contrast, iron
excess drives macrophage scavenger receptor
expression,60 cholesterol accumulation,60 and
foam cell formation.70,80

Commonality of Effects of Statins and

Low Iron Status

An extensive literature further suggests
commonalities between statin effects and lower
iron status. The data sources we reviewed
included MEDLINE, Scopus, and the Cochrane
Library. We searched these sources for prior
reports of statin---iron relationships and possi-
ble mechanisms underlying ferritin reduction

in participants receiving statins, using the fol-
lowing terms: statin---cardiovascular mortality
mesh, iron metabolism---HO mesh, hepcidin,
macrophage iron, foam cell atherosclerosis
ferroportin, and ferritin. We evaluated design
methodology, criteria for defining data quality
and report selection, and corresponding ter-
minology using prior guidelines.87,88

Level A data from prospective randomized
trials of statins1,2 and iron reduction42 on CVD
outcomes exist, but we did not find any level A
data on the comparative benefits of statins
versus iron reduction on clinical outcomes.
Level B evidence surfaced that may be classified
as “patient-oriented evidence that matters”; ef-
fects onmorbidity, mortality, or quality of life; or
“disease-oriented evidence.” Disease-oriented
evidence consisted of reports of changes in
measures of response or other parameters ob-
served in well-designed experimental, clinical,
and epidemiological studies.87,88 We excluded
descriptive, observational, and epidemiological
studies lacking appropriate interventions, mea-
surements, or comparator populations. The re-
sults of this search, summarized in Table1, show
strong congruity of benefits of statins and lower
iron status.

The Epidemiological Data

Middle-aged and older (i.e., aged 30---69
years) men and postmenopausal women that
the Food and Drug Administration identified

for statin benefit3 coincide with the age at
which serum ferritin levels become maxi-
mal44,125 and the age at which men benefitted
most from iron reduction.42 Plots of ferritin
levels by age and gender derived from National
Health and Nutrition Examination Survey III
data show that, following the adolescent
growth spurt, mean ferritin levels in males rise
and plateau at about140 to150 nanograms per
milliliter between the ages of 30 and 70
years.44,125 Ferritin levels in older age decline,
averaging about 80 nanograms per milliliter by
age 90 years, a phenomenon consistent with
a possible survival benefit of lower iron stores.
Ferritin levels in premenopausal women, in
whom disease risk is minimal,126,127 remain in
the childhood range, between about 25 and 50
nanograms per milliliter.44 Ferritin levels in
women then rise between the ages of 40 and
60 years to plateau at about 90 to 100 nano-
grams per milliliter with menopause44 syn-
chronously with increased disease risk.126,127

Epidemiological studies show that low levels
of body iron, measures of systemic oxidative
stress, and C-reactive protein characterize in-
dividuals consuming a Mediterranean-style
diet.89 These individuals exhibit a lower mor-
bidity and greater longevity than does the
Northern European population.89 Lower ferri-
tin levels typical of frequent blood donors are
also associated with a reduced risk of cardiac
events and overall superior health.128,129

TABLE 1—Clinical and Pathophysiologic Commonality in Benefits of Statins and Low

(Physiologic) Iron Status: 1999–2005

References

Observation Iron Effects Statin Effects

Global improvement of cardiovascular outcomes 42, 89, 90 1, 2, 91–93

Favorable carotid artery disease status 94–96 91, 92

Improved insulin resistance 97–99 100

Reduced procoagulant activity 101–104 105–107

Improved vasomotor function 76, 80, 108 109–111

Amelioration of postischemic reperfusion injury 112 113

Improved myocardial perfusion 114 115

Improved outcome following coronary artery procedures 112, 114, 116, 117 115, 118, 119

Amelioration of cardiac arrhythmias 120, 121 122, 123

Improved myocardial function in cardiomyopathy 120 124

Lower high-sensitivity C-reactive protein levels 37–39, 89 29, 100

Lower ferritin levels 42, 43, 89, 90 37–41
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Lower ferritin levels in premenopausal women
and elderly men coincide with evidence that
those questioning statin efficacy in these in-
dividuals have provided.130

The FeAST Data

FeAST trial findings described previously
support an association between lower ferritin
levels and greater longevity.42 Regression plots
of follow-up ferritin levels versus study out-
comes in control and iron reduction partici-
pants combined showed significant protective
effects of lower iron burden against death and
nonfatal myocardial infarction and stroke.42

Favorable effects were more pronounced with
iron reduction.42 The Food and Drug Admin-
istration3 recommends statin treatment for
patients with additional risk factors for CVD.
Several clinical CVD risk factors interact with
elevated iron stores. These include excessive
alcohol use,131 diabetes,132 hypertension,133

high body mass index,134 and high blood lipid
levels.135 Effects of such variables on CVD risk
may have been ameliorated by iron reduction.

Implications of the Statin–Iron Nexus

The proposal of the existence of a statin---iron
nexus results from evidence that statins alter
iron homeostasis47---56 and that both statins and
lower ferritin levels appear to be effective in
reducing oxidative stress and associated inflam-
mation, resulting in improved clinical outcomes.
Certain statin effects appear to be mediated by
mechanisms similar to iron reduction. FeAST
data suggest that improved cholesterol fractions
and reduced ferritin levels with statin treatment
occur by noninteracting mechanisms (Figure1).
Lower ferritin levels were associated with
significantly better outcomes in FeAST,42

whereas higher, presumably better, HDL/LDL
ratios were not (Figures 2 and 3).

Limitations of this report include the un-
availability of dose---effect relationships be-
tween statins and measures of cholesterol
fractions19 or ferritin levels.42,43 Studies of the
comparative effects of different statins on iron
homeostasis have not been performed. Head-
to-head comparisons between statin treatment
and iron reduction on clinical outcomes are
also unavailable. The cost-effectiveness of iron
reduction strategies has yet to be assessed
formally as it has for statin treatment,5,6 but
iron reduction may be inferred to be less

expensive. The FeAST study, conducted in the
Veterans Administration Hospital System, in-
cluded primarily male participants with PAD,
and its generalizability to women and other
populations is uncertain.

Strengths of the FeAST study include its
prospective randomized controlled single-
blind design, 6-year duration, intent-to-treat
method of data analysis, and virtually com-
plete follow-up.42,43 Both the ferritin level and
HDL/LDL ratio at entry were randomization
variables. Comparison of effects of ferritin
reduction and improvement in HDL/LDL
ratios was from the same data set. Should the
effectiveness of iron reduction be confirmed,
concerns over statin treatment benefits versus
risks11---17 might be obviated.136,137

Toward Anti-Inflammatory Treatment of

Arterial Disease

Body iron (ferritin) levels, relatively low
during childhood and the premenopausal years,
rise with aging as dietary intake exceeds
loss.44,125,138,139 Humans have no physiologic
mechanism for sensing and excreting excess
iron.30---32 Increased body iron stores occurring
with unnecessary ingestion of iron supple-
ments138,139 may be associated with increased
mortality.90,140,141 Elevated iron stores can be
prevented by dietary means89,138---144 or cor-
rected by blood removal31---34,42,78,126,144 or iron
chelation.80,108,112,117 Because iron homeostasis
is regulated primarily at the level of dietary
intake,89,138,139 benefits of reduced iron burden
could be achievable by diet as occurs in the
living Mediterranean population,89,143 which
exhibits low levels of ferritin, LDL cholesterol,
and markers of lipid oxidation and reduced
cardiovascular morbidity and mortality.

Efforts to implement a Mediterranean-style
diet in the United States145 may be less than
fully successful because of population-wide
exposure to unphysiologic iron supplements
ingested involuntarily.138,141,146 Confirmation
of the efficacy of iron reduction might point
the way to management of CVD using appro-
priate dietary measures. An analysis of public
policies that affect chronic nutritional iron
overdosing is beyond the scope of our study;
however, the Food and Drug Administration
classification of iron supplements as “generally
regarded as safe” may, in the absence of iron
deficiency, be open to question.147

The finding of a statin---iron nexus suggests
the possibility of a low-cost and safe alternative
to “treat-all” statin therapy.3---7 Past confusion
from negative epidemiological studies lacking
appropriate comparator populations148 could
be resolved by prospective trials of iron re-
duction in at-risk populations. Favorable out-
comes might be attained without a need for
universal drug treatment to achieve a low risk
range for ferritin levels approximating 75
nanograms per milliliter or lower.42,89,90 j
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