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Trophoblast research over the past decades has underlined the striking similarities between the proliferative, migratory
and invasive properties of placental cells and those of cancer cells. This review recapitulates the numerous key
molecules, proto-oncogenes, growth factors, receptors, enzymes, hormones, peptides and tumour-associated anti-
gens (TAAs) expressed by both trophoblastic and cancer cells in an attempt to evaluate the genes and proteins
forming molecular circuits and regulating the similar behaviours of these cells. Among the autocrine and para-
crine loops that might be involved in the strong proliferative capacity of trophoblastic and cancer cells, epidermal
growth factor (EGF)/EGF receptor (EGFR), hepatocyte growth factor (HGF)/HGF receptor (HGFR) (Met) and
vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) loops may play a predominant role. Similar
mechanisms of migration and invasion displayed by trophoblastic and malignant cells comprise alterations in the
adhesion molecule phenotype, including the increased expression of a1b1 and avb3 integrin receptors, whereas
another critical molecular event is the down-regulation of the cell adhesion molecule E-cadherin. Among proteases
that may play an active role in the invasive capacities of these cells, accumulating evidence suggests that matrix
metalloproteinase-9 (MMP-9) expression/activation is a prerequisite. Finally, an overview of molecular circuitries
shared by trophoblast and cancer cells reveals that the activation of the phosphatidylinositol 3¢-kinase (PI3K)/
AKT axis has recently emerged as a central feature of signalling pathways used by these cells to achieve their
proliferative, migratory and invasive processes.
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Introduction

The human placenta undergoes dramatic structural reorganization
during pregnancy so as to be functionally synchronized with the
development of embryonic fetal and maternal compartments
(Ohlsson et al., 1993). Although the placenta is a normal tissue, its
constituent cells, the trophoblastic cells, share several common
features with malignant cells. Their high cell proliferation, their
lack of cell-contact inhibition, their migratory and invasive prop-
erties as well as their capacity to escape effectors of the immune
system, in particular during the first trimester of pregnancy, have
led to the definition of the trophoblast as a ‘pseudo-malignant’
type of tissue or as a ‘physiological metastasis’ (Strickland and
Richards, 1992; Genbacev et al., 1997; Redman, 1997; Even-Ram
et al., 1998; Mullen, 1998). This review will focus on subpopula-
tions of normal trophoblastic cells that closely mimic malignant
cells. After the presentation of behavioural resemblances between

normal trophoblastic and malignant non-trophoblastic cells, the
many key molecules commonly expressed by these cells will be
described in an attempt to gauge the genes and proteins that parti-
cipate in molecular circuits implicated in their similar behaviours.
Moreover, this review will show how the complex body of know-
ledge generated by trophoblast and cancer research during the last
few decades is in line with the hypothesis that trophoblastic and
cancer cells use comparable mechanisms implemented by identi-
cal molecular circuitries to achieve their proliferative, migratory
and invasive processes. Finally, the comparison of placenta and
tumours will be crucial to our knowledge of major signalling cas-
cades and key molecules implicated in invasion and migration
processes. The identification of these pathways and molecules
could provide novel targets for the diagnosis and treatment of both
cancer diseases and pathological pregnancies, enabling the transla-
tion of basic reseach discoveries into clinical applications.
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Comparable behaviours of normal trophoblastic and 
malignant non-trophoblastic cells: proliferation and 
migration/invasion

In humans, after fertilization in the oviduct, a series of symmetri-
cal cell divisions create a mass of totipotent cells, the morula, still
enclosed within the zona pellucida. The first differentiation event
occurs after the compaction of the morula with the formation of
the blastocyst. Cells that lie outside of the morula become trophec-
toderm, the first epithelium in mammals, and trophoblasts are
derived from trophectoderm cells present in the blastocyst. They
form the fetal compartment (placenta) of the fetal–maternal inter-
face during pregnancy and are extra-embryonic tissues. When the
blastocyst invades the decidua of the uterine wall during implanta-
tion (6th–7th day after ovulation), trophoblast cells are on the
front line and become invasive as they differentiate (Boyd, 1980;
Redman et al., 1993; Cross et al., 1994; Loke and King, 1995).
Trophoblasts include various populations of cells with differing
morphologies. At an early stage, the founding population com-
prises cytotrophoblast stem cells attached to the trophoblast base-
ment membrane and actively proliferating. These trophoblast cells
follow two differentiation pathways, the villous and extravillous
pathways, and differentiate into villous and extravillous popula-
tions. In the villous pathway, villous cytotrophoblasts (vCTBs)
remain in the fetal compartment, where they fuse to form multinu-
cleate, weakly proliferating syncytiotrophoblasts (STs) that cover
the floating chorionic villi (Figure 1). These villi, which are in dir-
ect contact with maternal blood in the intervillous space, perform
nutrient and gas exchange for the fetus. In the other pathway,
which is the focus of the present review, a subset of proliferative
cytotrophoblast cells differentiates into extravillous (intermediate)
cytotrophoblasts (evCTBs). These cells leave the trophoblast base-
ment membrane and form columns of non-polarized cells, the
anchoring chorionic villi that attach to and then penetrate the uter-
ine wall. At the base of anchoring villi, evCTBs form clusters of
proliferating cells (proliferating evCTBs) (Lacroix et al., 2005).
As they further differentiate, evCTB cells lose the ability to divide

within cell columns and become mobile and highly invasive
(invading evCTBs). Moreover, the cytotrophoblast cell columns
spread laterally and fuse with the neighbouring columns to form a
cytotrophoblast shell that encircles the embryonic sac. The invad-
ing evCTB cells arise from this cytotrophoblast shell. Amongst
the invading (intermediate) evCTB cells, interstitial evCTB cells
invade the decidualized endometrium and the proximal third of the
myometrium (interstitial invasion), whereas some evCTB
(endovascular evCTB) cells invade the uterine spiral arteries
(endovascular invasion). During interstitial invasion, interstitial
evCTB cells, either individually or in small clusters, blend with
resident decidual, myometrial and immune cells. Following inva-
sion into the decidua, the interstitial trophoblastic cells become
isolated fusiform pleiomorphic cells. By 8 weeks of pregnancy,
interstitial evCTB cells have extensively colonized the full thick-
ness of the uterine mucosa to reach the decidual–myometral bor-
der. As the cells move deeper into the decidua, interstitial evCTB
cells become multinucleated and more rounded (placental bed
giant cells). During the second trimester, there is further invasion
into the inner myometrium, and most of the trophoblast cells here
possess the morphology of placental bed giant cells.

Thus, the behaviour of highly proliferative vCTB stem cells and
proliferative evCTBs (intermediate proliferating evCTBs at the
base of cell columns) closely resembles that of transformed cells
displaying a tumorigenic phenotype after neoplastic transforma-
tion. This transformation is accomplished by localized tumours in
the absence of metastasis (Gupta et al., 2005). Both cytotrophob-
lastic cells and cancer cells are highly proliferative and display a
lack of cell-contact inhibition, two major traits shared by all types
of human tumours. However, in contrast to that of tumour cells,
the proliferation of evCTB cells is tightly regulated, and these
cells quit cell growth during invasive differentiation (Pollheimer
and Knofler, 2005). Following the differentiation of proliferative
evCTBs into migratory and invasive evCTBs (intermediate invad-
ing evCTBs of cell columns, interstitial evCTBs and endovascular
evCTBs), the behaviour of invasive evCTBs closely resembles

Figure 1. Left: immunohistochemical staining of early placenta with antibody to cytokeratin 07. This antibody stains (brown colour) the villous cytotrophoblasts
(vCTBs) and the extravillous cytotrophoblasts (evCTBs) but does not stain the syncytiotrophoblasts (STs) (blue colour). Middle: Schematic representation of float-
ing and anchoring villi. Right: Diagram of different trophoblast subpopulations.
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that of transformed cells displaying a metastatic phenotype after
malignant transformation (Poste and Fidler, 1980). In effect, these
evCTBs possess one major aptitude shared by all metastatic
tumours, that of migration/invasion. In migratory and invasive
evCTBs, as well as in malignant cells, invasion is not due to pas-
sive growth pressure but rather due to an active process that
involves attachment to the basement membrane followed by
detachment and proteolysis of the basement membrane before its
penetration (Liotta, 1984; Bischof and Campana, 2000; Staff,
2001). However, the migratory and invasive capacities of invading
evCTB cells are spatially and time regulated. Ultimately, cytotro-
phoblastic cells and malignant cells share similar behaviour result-
ing from similar capacities. These capacities enable either the
accomplishment of successful embryo implantation and preg-
nancy progression when kept under control or the achievement of
neoplastic and malignant transformation when such capacities are
no longer kept under control.

Resemblance of the expression of key molecules implicated 
in proliferation, migration and invasive processes

The analogous behaviours of normal cytotrophoblast and cancer
cells originate in part from their individual genetic programmes,
and notably from their transcriptional and translational activities
that result in the production of proteins. Thus, the road towards a
better comprehension of the common characteristics shared by
these cells must include the knowledge of genes and proteins sim-
ilarly expressed by the two types of cells and which might play an
important role in their analogous proliferative, migratory and inva-
sive capacities. Amongst these genes and proteins are proto-onco-
genes, growth factors, cell-surface receptors, enzymes, enzyme
receptors and enzyme inhibitors, as well as various hormones and
peptides. In addition, this comprehension must also include the
elucidation of genes and proteins that could enable their immune
escape.

Proto-oncogenes

Proto-oncogenes are normal cellular genes homologous to the
viral oncogenes that induce cancer. Proto-oncogenes, once acti-
vated, become oncogenes that are also capable of inducing neopla-
sia. Activation occurs through various mechanisms such as
mutation, gene amplification or chromosome rearrangement.
Proto-oncogene products can be classified into cytokines, tyrosine
kinases, receptors, G-proteins, cell-cycle regulators, DNA repair
enzymes and transcription factors (Hesketh, 1995; Ruddon, 1995;
Bischof and Campana, 2000). They are thus responsible for essen-
tial processes, including cell proliferation, migration and invasion.
Proto-oncogenes play an important role in the aetiology of can-
cers, because their transcription is one of the first steps leading to
malignant cell transformation (Bishop, 1987). Thus, it is notewor-
thy that several proto-oncogenes are similarly expressed by both
normal trophoblasts and cancer cells. In the cancer catalogue,
many oncogenes act by mimicking normal growth signalling in
one way or another (Hahn and Weinberg, 2002). Similarly, several
proto-oncogenes encoding growth factor receptors are expressed
by trophoblast cells. The c-erbB1 (HER1, ERBB1 or EGFR) proto-
oncogene is expressed exclusively by the cytotrophoblast in 4- to
5-week placenta and predominantly in the ST after 6 weeks of

gestation (Maruo and Mochizuki, 1987; Sugawara et al., 1994;
Maruo et al., 1995). Owing to its mRNA expression pattern, it is
thus not surprising that the cDNA sequence of human epidermal
growth factor receptor (EGFR), the prototypical receptor tyrosine
kinase (RTK), was isolated and characterized in 1984 both from
normal placenta cells and from tumour cells (A431 epidermoid
carcinoma cells) (Ullrich et al., 1984; Gschwind et al., 2004). This
proto-oncogene encoded a 170-kDa transmembrane glycoprotein,
the EGFR, which belongs to the c-erbB family of RTKs and which
is involved in the pathogenesis of numerous tumours of different
histological type, including breast cancers (Hynes and Lane,
2005). At least four other proto-oncogenes, namely c-erbB2
(HER2/neu, ERBB2), c-fms (CSF1R), c-met (MET) and c-kit
(KIT), encode RTKs and are expressed by both normal trophob-
lasts and cancer cells (Table I). C-erbB2 is expressed by the
evCTB (Fulop et al., 1998) and codes for an RTK which, like the
EGFR, is expressed by tumours of different histological types and
is a target of cancer (immuno)therapy (Gschwind et al., 2004). C-fms
codes for the colony-stimulating factor receptor (CSF1R) and is
expressed by the ST (Fulop et al., 1998), whereas c-met is
expressed by the cytotrophoblast (Kauma et al., 1997) and codes
for the hepatocyte growth factor/scatter factor (HGF/SF) receptor
Met, a receptor that controls growth, invasion and metastasis in
cancer cells (Birchmeier et al., 2003). C-kit (KIT), which is
expressed by villous trophoblast cells (Doneda et al., 1997), codes
for the stem cell factor (SCF) receptor that plays an important role in
cell proliferation and cell migration (Kauma et al., 1996).

Several other proto-oncogenes that do not code for RTKs are
also expressed by normal trophoblast cells and tumour cells. C-Abl
(ABL1) codes for a protein that displays serine/threonine kinase
activity and that has been implicated in a range of cellular proc-
esses, including cell migration (Hantschel and Superti-Furga,
2004). C-fos (FOS), c-jun (JUN), c-myc (MYC) and c-ets1 (ETS1)
code for transcription factors and are all expressed by evCTBs
(Goustin et al., 1985; Quenby et al., 1998; Bamberger et al., 2004;
Takai et al., 2005), with the exception of c-jun that is also
expressed by the villous trophoblasts (Bamberger et al., 2004). It
was recently demonstrated that the Fos protein is important in
anchor cell invasion (Montell, 2005; Sherwood et al., 2005) and
that Fos is likely to contribute to cell invasion during both normal
development of trophoblasts and pathological processes leading to
metastases: Fos and Jun are expressed at the appropriate time and
place in trophoblast cells so as to stimulate trophoblast invasion
during the development of the placenta (Bischof, 2001). Fos,
which forms heterodimers with Jun, also appears to contribute to
tumour metastasis in at least some types of cancer: the expression
of c-fos correlates with poor prognosis in squamous cell lung
carcinomas (Volm et al., 1993), and c-fos is expressed at higher
levels in malignant prostate cancer than in benign prostatic hyper-
plasia (Aoyagi et al., 1998). C-myc (MYC) transcripts display
strong expression in evCTB cells of early placenta (Pfeifer-Ohlsson
et al., 1984): analyses of RNA from different periods of placental
development show a 20- to 30-fold excess of c-myc transcription
at 5 weeks as compared with terminal placenta. This ratio of tran-
scription is within the same order of magnitude as that observed
between the tumoral colon cell line COLO 320 HSR and normal
colon cells (Alitalo et al., 1983; Pfeifer-Ohlsson et al., 1984; Sarkar
et al., 1986). This proto-oncogene is part of the post-receptor intrac-
ellular signalling pathway for the stimulation of cell proliferation by
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a growth factor, and increased wild-type MYC expression occurs
frequently in human cancers (Dang et al., 2005). Immunoperoxi-
dase studies have shown that c-myc transcripts are also translated
in cytotrophoblasts (Maruo and Mochizuki, 1987). C-ets1 (ETS1)
is a downstream target of the HGF/SF pathway. Reciprocally,
ETS1 acts as a transcriptional factor for the MET gene (Paumelle
et al., 2002) and is thus implicated in cell proliferation and cell
migration (Birchmeier et al., 2003). This proto-oncogene is
strongly expressed by evCTB cells during the first trimester of
pregnancy (Takai et al., 2005).

Apart from proto-oncogenes encoding transcription factors, two
proto-oncogenes also expressed by both normal trophoblasts and
malignant tumours, c-sis (SIS, PDGFB) and c-ras (RAS), code for
proteins with different functions. The c-sis proto-oncogene
encodes one of the two chains (the B-chain) constituting platelet-
derived growth factor (PDGF). The c-sis proto-oncogene is tran-
scribed in early placenta at levels comparable with transcription in
human tumour (sarcoma) cell lines actively producing PDGF
(Goustin et al., 1985), and the maximal levels of c-sis transcripts
are found in particularly active and invasive evCTB cells (Goustin
et al., 1985). The c-ras family of proto-oncogenes (K-RAS, N-RAS
and H-RAS) codes for RAS proteins (small monomeric mem-
brane-localized GTPases) that play an essential role in controlling
the activity of several crucial signalling pathways that regulate
cellular proliferation (Downward, 2003; Malumbres and Barbacid,
2003). C-ras transcripts were found in early villous trophoblast at
4 weeks after conception, and expression was not apparent at 8
weeks after conception (Sarkar et al., 1986).

Finally, all these proto-oncogenes interact in a complex, only
partially elucidated way to control cellular proliferation, migration
and invasiveness, and it is remarkable that each type of trophoblast
expresses a subtly different combination of proto-oncogenes
(Quenby et al., 1998). Moreover, it is noteworthy that several of
those proto-oncogenes, including c-erbB1, c-myc, c-ets1, c-sis and
c-ras, are preferentially expressed by trophoblast cells during the
first weeks of pregnancy, a time at which the proliferative, migra-
tory and invasive properties of these cells are at their peak.

Growth factors and their receptors

Growth factors and their receptors play a central role in cell prolif-
eration. Indeed, normal cells require mitogenic growth signals
(GSs) before they can move from a quiescent state into an active
proliferative state. These signals are transmitted to the cell by
transmembrane receptors that bind distinct classes of signalling
molecules: diffusible growth factors, extracellular matrix (ECM)
components and cell-to-cell adhesion/interaction molecules
(Hanahan and Weinberg, 2000). It is now established that ectopic
synthesis or excessive production of these classes of molecules may
lead to the expression of a transformed phenotype. Interestingly,
many of these growth factors and their receptors are similarly
expressed by normal trophoblasts and malignant non-trophoblastic
tumours (Tables II and III).

Among the growth factors expressed by both normal trophoblasts
and malignant non-trophoblastic tumours are EGFs (Ladines-Llave
et al., 1991), CSF1 (Hamilton et al., 1998), transforming growth

Table I. Proto-oncogenes expressed by normal trophoblastic and malignant non-trophoblastic cells

aExpression observed at the mRNA level.

Proto-oncogenes Expression

Normal trophoblasts Malignant tumours

c-ras (RAS) Villous cytotrophoblasts (vCTBs) (Sarkar et al., 1986) Colorectal (Downward, 2003)
c-kit (KIT) vCTBs (Doneda et al., 1997) Breast (Crisi et al., 2005)

Testis (Nakai et al., 2005)
c-jun (JUN) Cytotrophoblast (CT), extravillous cytotrophoblasts (evCTBs) 

(Bamberger et al., 2004)
Lung (Maeno et al., 2006)

Kidney (Oya et al., 2005)
c-met (MET) CT (Kauma et al., 1997) Colon (Resnick et al., 2004)

Gastric (Birchmeier et al., 2003; Han et al., 2005)
c-fos (FOS) vCTB (Doneda et al., 1997)a Cervical (van Riggelen et al., 2005)

evCTB (Bamberger et al., 2004) Breast (Calaf and Hei, 2004)
c-myc (MYC) CT, evCTB (Pfeifer-Ohlsson et al., 1984; Goustin et al., 1985; 

Roncalli et al., 1994)
Breast (Sirotkovic-Skerlev et al., 2005)

Endometrium (Geisler et al., 2004)
c-erb-B1 (ERBB1, HER1) CT (before 6 weeks) Breast (Gschwind et al., 2004; Hynes and Lane, 2005)

Syncytiotrophoblast (ST) (after 6 weeks) (Maruo and Mochizuki, 1987; 
Hofmann et al., 1992; Sugawara et al., 1994a; Maruo et al., 1995)

Ovary (Henic et al., 2006)

c-erb-B2 (ERBB2, HER2) evCTB (Fulop et al., 1998) Breast (Hynes and Lane, 2005)
Gastric (Pinto-de-Sousa et al., 2002)
Cervical (Nakano et al., 1997)
Ovary (Frutuoso et al., 2001)

c-sis (SIS, PDGFB) evCTB (Goustin et al., 1985) Leukaemia (Romero et al., 1986)
Osteosarcoma (Graves et al., 1984)

c-fms (CSF1R) evCTB (Jokhi et al., 1993) Liver (Yang et al., 2004)
ST (Fulop et al., 1998)

c-Abl (ABL1) Trophoblasts (T) (Park et al., 1992) Leukaemia (Hantschel and Superti-Furga, 2004)
Ovarian (Niyazi et al., 2003)
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factor-α (TGF-α) (Horowitz et al., 1993), TGF-β (Dungy et al.,
1991), insulin-like growth factor (IGF) (Maruo et al., 1995), in
particular IGF-2 (Ohlsson et al., 1989), placental growth factor
(PIGF) (Maglione et al., 1991, 1993; Torry et al., 1999), vascular
endothelial growth factor (VEGF) (Clark et al., 1996), erythropoi-
etin (Conrad et al., 1996) and PDGF-like protein (Goustin et al.,

1985). A trophoblast-derived growth factor has also been
described as being similarly expressed by normal trophoblasts and
malignant non-trophoblastic tumours (Sen-Majumdar et al.,
1986b): this peptide is actively expressed in cytotrophoblastic and
ST cells in the human carcinoma cell line A431 and in the bladder and
breast tumour cells (Bishayee et al., 1984; Sen-Majumdar et al.,

Table II. Growth factors expressed by normal trophoblastic and malignant non-trophoblastic cells

aExpression observed at the mRNA level.

Growth factors Expression

Normal trophoblasts Malignant tumours

Epidermal growth factor (EGF) Cytotrophoblast (CT) (late), syncytiotrophoblast (ST) (early) 
(Ladines-Llave et al., 1991)

Endometrial carcinoma (Bellone et al., 2005)

Platelet-derived growth factor (PDGF)-like CTa (Goustin et al., 1985) Gastric (Wada et al., 1998)
Insulin-like growth factor-1 (IGF-1) CT (early and late), ST (late) (Maruo et al., 1995) Livera (Luo et al., 2005)

Gastrica (Zhao et al., 2005)
IGF-2 CTa (Ohlsson et al., 1989) Livera (Dong et al., 2005)

Breast (Giani et al., 2002)
Colony-stimulating factor-1 (CSF1) Extravillous cytotrophoblasts (evCTBs) (Hamilton et al., 1998) Breast (Sapi, 2004)

Endometrial carcinoma (Smith et al., 1995)
Vascular endothelial growth factor (VEGF) evCTB (Clark et al., 1996) Thyroid (Vieira et al., 2005)
Transforming growth factor (TGF)-β ST (Dungy et al., 1991) Lung (Saji et al., 2003)
Placental growth factor (PIGF) Trophoblasts (T) (Torry et al., 1999) Breast (O’Brien et al., 2003)

Table III. Growth factor receptors expressed by normal trophoblastic and malignant non-trophoblastic cells

aExpression observed at the mRNA level.

Growth factor receptors Expression

Normal trophoblasts Malignant tumours

Insulin receptors (IRs) Cytotrophoblast (CT), syncytiotrophoblast (ST) (Jones et al., 1993) Prostate (Huang et al., 2003)
Insulin-like growth factor (IGF)-IR CT (early and late), ST (late) (Murata et al., 1994) Adrenocortical (Ilvesmaki et al., 1993)
IGF-2R Villous cytotrophoblast (vCTB)a (Ohlsson et al., 1989) Adrenocortical (Ilvesmaki et al., 1993)
Corticotrophin-releasing factor (CRF)-R2 CTa (Florio et al., 2000) Central and peripheral nervous system (Reubi 

et al., 2003)
Epidermal growth factor receptor (EGFR) CT, ST (Maruo and Mochizuki, 1987; Hofmann et al., 1992; 

Sugawara et al., 1994a; Maruo et al., 1995)
Breast (Gschwind et al., 2004; Hynes and 
Lane, 2005)
Ovarian (Henic et al., 2006)

Hepatocyte growth factor receptor (HGFR) CT (Kauma et al., 1997) Colon (Resnick et al., 2004)
Gastric (Birchmeier et al., 2003; Han et al., 2005)

Erythropoietin-R vCTB, extravillous cytotrophoblasts (evCTBs), ST (Fairchild 
Benyo and Conrad, 1999)

Lung (Dagnon et al., 2005)

Breast (Acs et al., 2002)
Vascular endothelial growth factor receptor
(VEGFR)-1 (Flt-1)

evCTB (Athanassiades et al., 1998; Tseng et al., 2006) Breast (Meunier-Carpentier et al., 2005)

VEGFR-2 (KDR)
Granulocyte–macrophage colony-stimulating 
factor receptor (GM-CSFR)

vCTB, evCTB (Jokhi et al., 1994) Prostate (Rivas et al., 1998)

G-CSFR evCTBa (McCracken et al., 1999) Colon (Yang et al., 2005)
ERBB2 evCTB (Fulop et al., 1998) Breast (Hynes and Lane, 2005)

Gastric (Pinto-de-Sousa et al., 2002)
Cervical (Nakano et al., 1997)
Ovary (Frutuoso et al., 2001)

CSF1R evCTB (Jokhi et al., 1993) Prostate (Ide et al., 2002)
ST (Fulop et al., 1998) Breast (Sapi, 2004)

Liver (Yang et al., 2004)
Endometrial carcinoma (Smith et al., 1995)

Platelet-derived growth factor 
(PDGF)-AAR

Trophoblasts (T) (Gurski et al., 1999) Breast (Carvalho et al., 2005)
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1986a; Roy-Choudhury et al., 1988). This 34-kDa protein is one
of the most abundant molecules present on trophoblast mem-
branes, especially during the first trimester of pregnancy. Its
amino acid sequence resembles that of the calpactins, a family of
proteins capable of binding calcium, phospholipids and actin.
Finally, it is noteworthy that most of those growth factors, with the
exception of TGF-β, are expressed by cytotrophoblast cells.

Among growth factor receptors expressed by both normal tro-
phoblasts and malignant non-trophoblastic tumours, there are
those encoded by proto-oncogenes which, once activated, become
oncogenes capable of inducing neoplasia. These receptors, as
described above, include EGFR EGFR/ERBB1, HER2/neu RTK
ERBB2, CSFR and HGF/SF receptor Met. Moreover, the trophob-
last cells are rich in receptors for many other growth factors
including the insulin receptor (Jones et al., 1993), the IGF-I recep-
tor (Murata et al., 1994), the IGF-II receptor (Ohlsson et al.,
1989), VEGF receptors (VEGFR-1 or Flt-1 and VEGFR-2 or
KDR) (Athanassiades and Lala, 1998; Athanassiades et al., 1998;
Chakraborty et al., 2002; Tseng et al., 2006), the erythropoietin
receptor (Fairchild Benyo and Conrad, 1999), the granulocyte–
macrophage (GM)-CSFR (Jokhi et al., 1994), the granulocyte (G)-
CSFR (McCracken et al., 1999) and the PDGF receptor (Gurski et al.,
1999). Again, it is striking that a large majority of these receptors
are expressed by cytotrophoblast cells.

Enzymes

Invasion and migration are complex processes, and their genetic
and biochemical determinants remain incompletely understood. At
the mechanistic level, they are closely allied processes, which jus-
tifies their association with one another as representing a common
function of both normal and cancer cells. The two processes utilize
similar operational strategies involving changes in physical cou-
pling of cells to their microenvironment and activation of extracel-
lular proteases. Many proteases, protease receptors and protease
inhibitors are similarly expressed by both normal trophoblasts and
malignant cells (Table IV). These proteases include several mem-
bers of the family of matrix metalloproteinases (MMPs) (Bischof
et al., 2000). MMPs, also called matrixins, are a family of at least
17 human zinc-dependent endopeptidases collectively capable of
degrading essentially all components of the ECM. Normal tro-
phoblasts and cancer cells express (i) MMP-2 (also called gelati-
nase A) and MMP-9 (also called gelatinase B) (Bjorn et al., 2000;
Isaka et al., 2003), which digest collagen type IV (the major con-
stituent of basement membranes) and denatured collagen (gela-
tine); (ii) MMP-11 (also called stromelysin-3), which digests
collagen; and (iii) a membrane-bound MMP, membrane-type
MMP-1 (MT-MMP-1), which is thought to activate progelatinase A.
Most MMPs are secreted as inactive proenzymes that become
activated in the extracellular compartments. In addition to MT-
MMPs, several enzymes are capable of activating these proen-
zymes, the most prominent being plasmin. The latter enzyme is
activated from plasminogen by the urokinase plasminogen activa-
tor (uPA), which is also secreted by normal trophoblastic and
malignant non-trophoblastic cells and is involved in the invasive
behaviour of these cells. Both trophoblasts and cancer cells also
express the uPA receptor (Zini et al., 1992), which can bind active
uPA and localize proteolysis to the leading edge of migrating cells
(Estreicher et al., 1990; Roldan et al., 1990; Strickland and Richards,

1992). The activity of the plasminogen activator is inhibited by the
plasminogen activator inhibitor (PAI-1), which is also expressed
by both trophoblasts and malignant tumours. Moreover, the activ-
ity of MMPs in the extracellular space is inhibited by the tissue
inhibitors of metalloproteinases (TIMPs) that bind specifically to
the highly conserved zinc-binding site of active MMPs at molar
equivalence. The TIMP gene family consists of four structurally
related members, TIMP-1, TIMP-2, TIMP-3 and TIMP-4, and
both normal trophoblastic and malignant non-trophoblastic cells
express TIMP-1. Other enzymes such as heparan sulphate-
degrading endoglycosidase, similarly referred to as heparanase, are
expressed by cytotrophoblasts (Klein and Von Figura, 1976;
Haimov-Kochman et al., 2002), and the expression of heparanase
correlates with the metastatic behaviour of cancer cells (Parish et al.,
1987; Nakajima et al., 1988; Friedmann et al., 2000). In addition,
two protease receptors are also expressed by normal trophoblasts
and cancer cells: the protease-activated receptor (PAR) (O’Brien
et al., 2003) and the receptor for thrombin, a serine protease
(Even-Ram et al., 1998). Taken together, these data show that tro-
phoblasts and malignant cells possess many similar components
implicated in molecular circuitries aimed at degrading the ECM.

Various (glyco)protein hormones, peptides and receptors

Various hormones, peptides and receptors similarly expressed by
normal trophoblasts and malignant cells are quite impressive
(Table V), especially when bearing in mind that many of those
molecules may have a direct or indirect impact on the prolifera-
tive, migratory and invasive properties of these cells. Amongst
these hormones, peptides and receptors are the following: a
growth hormone variant (hGH-V) (Scippo et al., 1993), human
placental lactogen (HPL) (Sasagawa et al., 1987), prolactin (PRL)
(Kasai et al., 1982), urocortin (Clifton et al., 2000), Met-enkephalin
(Sastry et al., 1980), β-endorphin (Laatikainen et al., 1987),
dynorphins (DYN) (Ahmed et al., 1992), somatostatin (Watkins
and Yen, 1980), thyrotrophin-releasing hormone (TRH) (Bajoria
and Babawale, 1998), GnRH (Chou et al., 2004), inhibin (Shih
and Kurman, 1999), activin (Caniggia et al., 1997), follistatin
(Petraglia et al., 1994), neuropeptide Y (NPY) (Petraglia et al.,
1989), renin (Tomita et al., 1987; Egan et al., 1988), oxytocin
(Chibbar et al., 1993), relaxin (Bryant-Greenwood et al., 1987),
leptin (O’Brien et al., 1999; Castellucci et al., 2000), tumour
necrosis factor-alpha (TNF-α) (Haynes et al., 1993), ACTH
(Saijonmaa et al., 1988), corticotrophin-releasing factor (CRF)
(Saijonmaa et al., 1988), their receptors CRF-R1 and CRF-R2
(Florio et al., 2000) and a receptor for leukaemia inhibitory factor
(LIF) (Sharkey et al., 1999). Recent studies have shown that mole-
cules such as pro-early placenta insulin-like peptide (pro-EPIL), a
novel peptide involved in the motility and invasiveness of cancer
cells (Bellet et al., 1997a; Brandt et al., 2002), and metastin, a
peptide encoded by metastasis suppressor gene KiSS-1 (Ohtaki
et al., 2001; Bilban et al., 2004), are also produced by both normal
trophoblastic and cancer cells.

Tumour-associated antigens

An overview of the traits common to both normal trophoblasts and
cancer cells cannot overlook tumour-associated antigens (TAAs)
expressed by both types of cells (Table VI), even though the
implication of these antigens in the comparable behaviour of such
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cells is unclear. The prototypic TAA expressed by both trophob-
lasts and cancer cells is the beta subunit of hCGβ. hCG is a glyco-
protein hormone composed of two non-covalently linked
molecules, the alpha subunit (hCGα) and the beta subunit (hCGβ).
Alpha and beta subunits of hCG are produced by ST cells and
secreted into the maternal circulation preferentially in the form of
the α/β dimer that constitutes hCG (Ozturk et al., 1988). hCG is
found in the blood of pregnant women at 6–8 days after fertiliza-
tion (Tyrey, 1982), but hCGβ mRNA is already detectable at the
8-cell stage (Bonduelle et al., 1988). The free hCGβ subunit is
also produced by numerous non-trophoblastic malignant tumours
of different histological types, including bladder, pancreatic and
cervical carcinomas (Marcillac et al., 1992). Indeed, the similarity
between normal trophoblastic cells and malignant non-trophoblastic
cells is particularly striking at the level of hCGβ gene expression:
the beta subunit of hCG, which is comprised of 145 amino acid
residues, is encoded by four non-allelic CG beta (CGb) genes.
Type I CGb allelic genes beta-7 and beta-6 possess a GCC codon
corresponding to an alanine at position 117 of hCGβ, whereas type
II CGb genes beta-8, beta-5 and beta-3 and its allele beta-9 pos-
sess a GAC codon corresponding to an aspartic acid at the same
position (Figure 2). In normal trophoblast, hCGβ is encoded by
type II CGb genes, whereas normal non-trophoblastic tissues of a
different histological origin (breast, prostate, skeletal muscle,
bladder, adrenal glands, thyroid, colon and uterine) express only
type I CGb genes. In contrast, non-trophoblastic tumours of differ-
ing histological origins, including breast, bladder, prostate and
thyroid cancers, express type II CGb genes. Experiments per-
formed on tumour tissues and their normal counterparts have con-
firmed that the malignant transformation of non-trophoblastic
cells is associated with the expression of type II CGb genes
expressed by normal trophoblastic cells (Bellet et al., 1997b).
These observations are a salient illustration of the exquisite

similarity between normal trophoblast and malignant non-
trophoblastic tumours in terms of the expression of certain genes.

Apart from the prototypic TAA hCGβ, several other TAAs are
also expressed by trophoblasts, including prostate-specific antigen
(PSA), an antigen overexpressed by prostate cancers (Malatesta
et al., 2000), osteopontin (OPN) (Briese et al., 2005a) and
CEACAM1, a member of the carcinembryonic antigen (CEA)
family (Bamberger et al., 2001). Moreover, the pregnancy-specific
β-glycoprotein (PS-βG) family is characteristic of trophoblasts
(Lei et al., 1992) and contains molecules displaying close homolo-
gies to CEA (Oikawa et al., 1989; Leslie et al., 1990). In addition,
recently identified genes from the melanoma antigen (MAGE),
G antigen (GAGE) and P antigen (PAGE) families that encoded
tumour-specific shared antigens expressed by either melanomas or
a prostate cancer cell line are also expressed in the placenta (Chen
et al., 1998; De Backer et al., 1999; Kwon et al., 2005).

Taken together, these data indicate that numerous genes and
proteins are similarly expressed by normal trophoblastic cells and
malignant non-trophoblastic cells. In line with that observation, a
recent study using DNA microarrays showed that cancer cells
overexpress genes that are preferentially expressed in only one
type of normal tissue, such as placenta. On the basis of the latter
observations, it was suggested that the ability to overexpress genes
normally preferentially expressed in tissues other than those of the
cancer’s origin is a general property of cancer cells and that this
capacity is of major importance in determining the behaviour of
the cancer, including its metastatic potential (Lotem et al., 2005).

Similar mechanisms of proliferation

Several comparable mechanisms may explain the high prolifera-
tive capacity of both trophoblastic and cancer cells. Amongst
them, and as shown by recapitulation of the many key molecules

Table IV. Enzymes, enzyme receptors and enzyme inhibitors expressed by normal trophoblastic and malignant non-trophoblastic cells

aExpression observed at the mRNA level.

Enzymes, enzyme receptors and enzyme 
inhibitors

Expression

Normal trophoblasts Malignant tumours

Membrane-type matrix metalloproteinase-9 
(MT-MMP-9) (gelatinase B)

Cytotrophoblast (CT) (Isaka et al., 2003; Cohen et al., 2006b) Ovariana (Hu et al., 2004)

Heparanase CT (Haimov-Kochman et al., 2002) Breast (Cohen et al., 2006a)
Pancreas (Schoppmeyer et al., 2005)

Thrombin receptor CT (Even-Ram et al., 1998) Breast (Even-Ram et al., 1998)
Urokinase plasminogen activator (uPA) Extravillous cytotrophoblasts (evCTBs) (Floridon et al., 1999) Bladder (Champelovier et al., 2002)

Breast (Kim et al., 1997)
Gastric (Iwamoto et al., 2005)

uPA receptor evCTB (Floridon et al., 1999) Gastrica (Iwamoto et al., 2005)
Breast (Kim et al., 1997)

Tissue inhibitor of metalloproteinase-1 (TIMP-1) evCTB (Huppertz et al., 1998) Breasta (Nakopoulou et al., 2002)
Ovariana (Hu et al., 2004)
Colona (Pesta et al., 2005)

MT-MMP-1 evCTB (Nawrocki et al., 1996) Colona (Okada et al., 1995)
Protease-activated receptor (PAR) evCTB (O’Brien et al., 2003) Breast (Boire et al., 2005)
MT-MMP-11 evCTB (Maquoi et al., 1997; Cohen et al., 2006b) Gastric (Deng et al., 2005)
MT-MMP-2 evCTBa (Bjorn et al., 2000) Ovariana (Hu et al., 2004)

evCTB (Isaka et al., 2003; Cohen et al., 2006b) Colona (Pesta et al., 2005)
Plasminogen activator inhibitor (PAI-1) Trophoblasts (T) (Zini et al., 1992) Colorectala (Sakakibara et al., 2005)

Gastrica (Iwamoto et al., 2005)
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expressed by the two types of cells, many are growth factors or
growth factor receptors, suggesting that autocrine and paracrine
growth might be important mechanisms in their proliferation.

Autocrine and paracrine growth

Although most soluble mitogenic growth factors are made up of
one cell type to stimulate the proliferation of another (the process
of heterotypic signalling), many cells acquire the ability to synthesize

growth factors to which they are responsive, creating a positive
feedback signalling loop often termed autocrine stimulation. Auto-
crine signalling (production of, and response to, a ligand by the
same cell) is a similar mechanism of signal transduction in normal
physiological processes. During tumorigenesis, misregulated auto-
crine signalling can render cancer cells less dependent on survival
and growth factors from surrounding tissues. Several autocrine
loops are common features of both trophoblastic and cancer cells, and
notably the EGF/EGFR loop (Hofmann et al., 1992; Maruo et al.,

Table V. Various (glycoprotein) hormones, peptides and receptors expressed by normal trophoblastic and malignant non-trophoblastic cells

aExpression observed at the mRNA level.

(Glyco) protein hormones, peptides, receptors Expression

Normal trophoblasts Malignant tumours

Somatostatin Cytotrophoblast (CT) (Watkins and Yen, 1980) Pancreas (Tamiolakis et al., 2005)
Metastin CT (Bilban et al., 2004) Breast (Martin et al., 2005)
Activin A CT (Caniggia et al., 1997) Endometriuma (Otani et al., 2001)

Liver (Wagner et al., 2004)
Neuropeptide Y (NPY) CT (Petraglia et al., 1989) Pancreas (Waeber et al., 1995)

Pituitary (Grouzmann et al., 1998)
Relaxin CT (Bryant-Greenwood et al., 1987) Breast (Tashima et al., 1994)
Corticotrophin-releasing factor (CRF) CT (Saijonmaa et al., 1988) Endometriuma (Florio et al., 2003)

Bronchial carcinoid (Suda, 1994)
Pro-early placenta insulin-like peptide (Pro-EPIL) Villous cytotrophoblast (vCTB) (Bellet et al., 1997a) Breast (Brandt et al., 2002)
CRF-R2 CTa (Florio et al., 2000) Central and peripheral nervous system (Reubi et al., 2003)

Leukaemia inhibitory factor (LIF-R) vCTB–extravillous cytotrophoblasts (evCTBs) 
(Sharkey et al., 1999)

Prostate (Garcia-Tunon et al., 2005)

Ovary (Savarese et al., 2002)
GnRH evCTB (Chou et al., 2004) Ovarian (Grundker and Emons, 2003)

Breast (Grundker et al., 2002)
Endometrium (Grundker et al., 2002)

Leptin evCTB (Castellucci et al., 2000) Breast (O’Brien et al., 1999; Somasundar et al., 2004)
Human placental lactogen (HPL) or 
human chorionic somatomammotropin (HCS)

evCTB (Sasagawa et al., 1987) Breast (Bonneterre et al., 1990)

Methionine enkephalin Villous placenta (Sastry et al., 1980) Thyroid, pituitary, carcinoid (Bostwick et al., 1987)
Inhibin Syncytiotrophoblasts (STs) (Shih and Kurman, 1999) Ovary (Yamashita et al., 1997)

Breast (Shih and Kurman, 1999)
Follistatin ST (Petraglia et al., 1994) Endometrium (Ciarmela et al., 2004)
Prolactin (PRL) ST (Kasai et al., 1982) Colon (Otte et al., 2003)
Thyrotrophin-releasing hormone (TRH) ST (Bajoria and Babawale, 1998) Melanoma (Ellerhorst et al., 2004)
Beta endorphin ST (Laatikainen et al., 1987) Breast (Nesland et al., 1988)
Growth hormone (GH) ST (Scippo et al., 1993) Breast (Ahmed et al., 1992; Mol et al., 1995; 

Laban et al., 2003)
Urocortin ST (Clifton et al., 2000) Prostate (Arcuri et al., 2002)
TNF-α ST (Haynes et al., 1993) Ovary (Kulbe et al., 2005)
CRF-R1 STa (Florio et al., 2000) Central and peripheral nervous system (Reubi et al., 

2003)

Table VI. Tumour-associated antigens (TAAs) expressed by normal trophoblastic and malignant non-trophoblastic cells

TAAs Expression

Normal trophoblasts Malignant tumours

CEACAM1 Extravillous cytotrophoblasts (evCTBs) (Bamberger et al., 2001) Colorectal (Nittka et al., 2004)

Osteopontin (OPN) evCTB (Briese et al., 2005b) Ovary (Kim et al., 2002)
Breast (Das et al., 2004)

hCG-β Syncytiotrophoblast (ST) (Yoshida, 2005) Gonadal and non-gonadal (Marcillac et al., 1992)
Prostate-specific antigen (PSA) ST (Malatesta et al., 2000) Prostate (Hood et al., 2005)
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1995; Petraglia et al., 1996), the IGF-2/IGF-2R loop (Ohlsson
et al., 1989), the CSF1/CSF1R loop (Hamilton et al., 1998), the
PDGF/PDGFR loop (Goustin et al., 1985) and the VEGF/VEGFR
(Flt-1 and KDR) loop (Ahmed et al., 1995; Athanassiades and
Lala, 1998; Athanassiades et al., 1998). The engagement of RTKs
with growth factors such as EGF or IGF-2 promotes the activation
of mitogen-activated protein kinase (MAPK) signalling (Lewis
et al., 1998). Amongst the numerous MAPKs that are classified into
four different families, protein kinases belonging to the extracellu-
lar-regulated kinase (ERK) family are the MAPKs predominantly
activated by growth factors. A highly complex network of protein
kinases regulates the activity of MAPKs through sequential phos-
phorylations at critical Ser, Thr and Tyr residues. Proteins of the
MAPK kinase kinase (MAPKKK) family such as Raf or MEKK
phosphorylate MAPK kinases (MAPKKs) including MEKs. The
MAPKKs then activate the four major families of MAPKs includ-
ing the ERK family. ERKs have been shown to play an important
role in growth-factor-dependent regulation of trophoblast growth
and migration (Pollheimer and Knofler, 2005). In the placenta, the
expression of ERK1 and ERK2 was detected in vCTBs, but their
active phosphorylated forms were only present until the 12th week
of gestation, suggesting a predominant role during early preg-
nancy (Kita et al., 2003).

Apart from MAPK signalling, a second pathway downstream
from RTKs involves phosphatidylinositol 3′-kinase (PI3K) and
AKT and is an important regulator of cell proliferation and sur-
vival (Vivanco and Sawyers, 2002). Phosphorylated RTKs inter-
act with p85 subunits of PI3K and recruit the enzyme to the
membrane, whereas GTPases activate PI3K through binding of its
p110 subunit. At the membrane, PI3K phosphorylates phosphati-
dylinositol-4,5-bisphosphate (PIP2) and thereby converts PIP2 to
phosphatidylinositol(3,4,5)triphosphate (PIP3), which activates
the serine/threonine protein kinases AKT and PDK1. AKT/kinase B
(PKB), a serine/threonine protein kinase that possesses three
isoforms, phosphorylates a plethora of other target proteins that
control proliferation, survival and cell size (Toker and Yoeli-
Lerner, 2006), whereas PDK1 phosphorylates different protein
kinase C (PKC) subunits. PKC and Ca/calmodulin-dependent

kinase II (CaMKII) are also controlled through the PIP3-mediated
increase in cytosolic Ca2+ levels. PIP3 levels are tightly regulated
by lipid phosphatases such as phosphatase and tensin (PTEN)
homologue converting PIP3 to PIP2 (Vivanco and Sawyers, 2002).
The activation of the PI3K/AKT pathway and loss-of-function
mutations of PTEN, which acts as a tumour suppressor, have been
noted in a wide range of cancers (Cully et al., 2006). One of the
critical targets of AKT is mTOR that plays a crucial role in PI3K-
mediated oncogenesis (Vivanco and Sawyers, 2002). The kinase
mTOR controls cell-cycle progression and cell size/mass through
phosphorylation of proteins controlling protein translation (Fingar
and Blenis, 2004). The activation of PI3K also plays a role in
migration/invasion, for example, during IGF-I-induced migration
of vascular smooth muscle cells (Duan et al., 2000). PI3K also
plays a crucial role in growth-factor-mediated trophoblast migra-
tion. The activation of PI3K with specific peptides resulted in
increased motility of SGHPL-5 evCTB cells, whereas the
inhibition of PI3K reduced basal and HGF-induced migration
(Cartwright et al., 2002). The integrated action of PI3K and ERK
in EGF-stimulated phosphorylation and migration of HTR-8/
SVneo evCTB cells was also demonstrated (Qiu et al., 2004a,b).

Growth factors can also activate focal adhesion kinase (FAK), a
widely expressed non-receptor protein tyrosine kinase that has a
growth/migration-promoting role. The activation of FAK is
achieved by phosphorylation at different amino acid residues, in
particular by phosphorylation at Tyr-397, and FAK activity was
shown to be associated with tumour progression of cancer cells
towards a malignant phenotype (Gabarra-Niecko et al., 2003). It is
thus noteworthy that the phosphorylated form of the kinase was
predominantly detected in interstitial cytotrophoblasts and was
more abundant during the first weeks of pregnancy, colocalizing
with the extravillous trophoblast markers MMP-2 and α5 integrin.
In addition, the down-regulation of FAK reduced the outgrowth/
migration of villous explant cultures and diminished the invasion
of isolated cytotrophoblasts through Matrigel-coated chambers
(Ilic et al., 2001; MacPhee et al., 2001). FAK also has an impact
on activities of Rho proteins, a family (RhoA, Racl, Cdc 42) of
particular GTPases regulating diverse biological processes such as

Figure 2. Organization of the CGβ/LHβ gene cluster and expression of human CGb genes that code for the hCGβ subunit, a prototypic tumour-associated antigen.
Normal trophoblastic and malignant non-trophoblastic cells express type II CGb genes encoding the hCGβ subunit with an aspartic acid residue (ASP) at position
117. Normal non-trophoblastic cells express type I CGb genes encoding the hCGβ subunit with an alanine residue (ALA) at position 117. LHb: gene encoding the
beta subunit of human lutropin.
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cell cycle, cell–cell/focal adhesions, polarization and cell migra-
tion (Hall, 1998; Goode et al., 2000). The downstream effectors of
Rho include p21-activated kinase (PAK), which cross-talks to the
MAPK pathway by modulating Raf and Rho-associated, coiled-
coil containing protein kinase (ROCK). The functionality of the
RhoA–ROCK signalling cascade has also been suggested during
trophoblast migration. Experiments based on presumptive extravil-
lous trophoblast obtained after plating of minced first-trimester
placental fragments showed that the treatment of these cells with
selective Rho and ROCK inhibitors reduced spreading and migra-
tion through fibronectin-coated filters (Shiokawa et al., 2002).

The effects of autocrine signalling can also be amplified by
paracrine signalling between neighbouring homotypic and hetero-
typic cells. Within normal tissue such as the placenta, cells are
also instructed to grow by their neighbours (paracrine signals) or
via systemic (endocrine) signals. Cell-to-cell growth signalling is
likely to operate in the vast majority of human tumours as well;
virtually, all are composed of several distinct cell types that
appear to communicate via heterotypic signalling (Hanahan and
Weinberg, 2000). Amongst paracrine loops common to both
trophoblasts and cancer cells is the HGF/HGFR (Met) loop:
cytotrophoblasts express Met (HGFR) (Saito et al., 1995),
whereas mesenchymal cells within the stromal cores of chorionic
villi produce HGF (Kauma et al., 1997). The binding of HGF to
Met leads to the phosphorylation of two C-terminal tyrosine resi-
dues and the generation of a multidocking site. These phosphoty-
rosines mediate high-affinity interactions with Src homology 2
(SH2) domains of many proteins, including the p85 subunit of
PI3K that can then transduce signals to downstream targets
(Birchmeier et al., 2003). HGF/SF signals induce proliferative and
anti-apoptotic responses in various cell types. In cancer cells,
HGF/SF signals control growth, invasion and metastasis. Simi-
larly, HGF/SF and Met provide essential signals for survival and
proliferation of trophoblasts (Birchmeier et al., 2003). HGF also
increases trophoblast mobility and invasion: experiments per-
formed with the extravillous trophoblast cell line SGHPL-4 dem-
onstrate that the PI3K signalling pathway is involved in basal
trophoblast mobility and that both MAPK and PI3K signalling
pathways are important in HGF-stimulated mobility (Cartwright
et al., 2002). Another paracrine loop common to both normal tro-
phoblasts and neoplasia is the VEGF/VEGFR loop. VEGFs are
crucial regulators of vascular development during embryogenesis
(vasculogenesis) as well as of blood-vessel formation (angiogen-
esis) of both normal tissues and malignant tumours in the adult. In
a broader perspective, the VEGFRs induce cellular processes that
are common to many growth-factor receptors, including cell
migration, survival and proliferation (Olsson et al., 2006). Several
reports indicate that cytotrophoblasts in cell columns and in the
placental bed express the VEGF receptor-1 (VEGFR-1 or Flt-1),
one of the three VEGF RTKs, and that VEGFA (usually called
VEGF) itself, one of the five members of the VEGF family, is
expressed by cytotrophoblasts as well as by fetal macrophages in
chorionic villi and by maternal macrophages in the uterine wall
(Ahmed et al., 1995; Clark et al., 1996; Shiraishi et al., 1996).
Moreover, VEGFR-1 also binds placenta growth factor (PlGF),
another member of the VEGF family expressed by normal tro-
phoblasts and by cancer cells. In extravillous trophoblast, it has
been reported that VEGFA and PlGF stimulate proliferation but
not migration or invasiveness of these cells (Athanassiades and

Lala, 1998; Athanassiades et al., 1998). Thus, evCTB, via
VEGFR-1, could respond in either a paracrine or an autocrine
fashion to VEGFA and PlGF (Zhou et al., 1997b). The VEGFR-1
tyrosine kinase exhibits all the conserved motifs that are required
for kinase activity. Several VEGFR-1 tyrosine phosphorylation
sites and their potential interacting partners, including the p85 sub-
unit of PI3K, have been described (Olsson et al., 2006). Indeed,
the level of phosphorylation of VEGFR-1 in response to VEGFA
is low (Waltenberger et al., 1994; Seetharam et al., 1995). How-
ever, a particular feature of the VEGFA ligand is the dramatic up-
regulation of its expression levels under hypoxic conditions.
Hypoxia, a condition that may affect both evCTB and cancer cells,
allows the stabilization of hypoxia-inducible factors (HIFs) that
bind to specific promoter elements that are present in the promoter
region of VEGFA (Pugh and Ratcliffe, 2003). Similarly, the
expression of VEGFR-1 is directly regulated by HIFs (Gerber et al.,
1997).

Taken together, these data show that several autocrine and para-
crine loops can be used by normal proliferative trophoblasts and
by cancer cells to expand in number.

Evasion of apoptosis

The ability of cell populations to expand in number is determined
not only by the rate of cell proliferation but also by the rate of cell
attrition. Programmed cell death (apoptosis) represents a major
source of this attrition. Numerous observations indicate that the
apoptotic program is present in latent form in virtually all cell
types throughout the body. The apoptotic machinery can be
broadly divided into two classes of components, sensors and effec-
tors. The sensors are responsible for monitoring the extracellular
and intracellular environment for conditions of normality or
abnormality that influence whether a cell should live or die. These
signals regulate the second class of components, which function as
effectors of apoptotic death (Hanahan and Weinberg, 2000). The
sensors include cell-surface receptors that bind survival or death
factors. Examples of these ligand/receptor pairs similarly
expressed by trophoblasts and cancer cells are the survival signals
conveyed by IGF-1/IGF-2 through the receptor IGF-1R (Lotem
and Sachs, 1996; Butt et al., 1999). Signalling through the IGF
receptor has been shown to have a potent survival function and
protects cells from various apoptotic stimuli (Butt et al., 1999).
The IGF pathway is unique in that, upon ligand binding and recep-
tor autophosphorylation, insulin receptor substrate-1 (IRS-1) asso-
ciates with IGF-1R. Tyrosine phosphorylation of IRS-1 in turn
leads to the binding and activation of PI3K. The phosphorylation
of inositol membrane lipids at the 3′ position by PI3K is a critical
step in the IGF-IR signalling pathway. Many kinases have been
identified that associate with these 3′-phosphorylated membrane
lipids and subsequently participate in the kinase signalling cas-
cade. AKT, one of the kinases in this activation cascade, has a dis-
tinct function in promoting cell survival by phosphorylating and
blocking the proapoptotic activity of proteins such as BCL2-
antagonist of cell death (BAD). Apart from the PI3K-AKT-mTOR
system, another downstream network of IGF-1R includes the
RAF-MAPK system. The activation of these pathways stimulates
proliferation, as underlined previously, and inhibits apoptosis. In
cancer cells, several model systems have provided evidence that
IGF-1 receptor activation increases not only proliferation but also
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metastasis (Khandwala et al., 2000; Pollak et al., 2004). In tro-
phoblast cells, it remains to be determined whether the activation
of this receptor is primarily involved in proliferation, or rather, in
the invasive capacities of these cells (Chakraborty et al., 2002).

Similar mechanisms of migration and invasion

A striking similarity between cytotrophoblasts and neoplastic cells
lies in their proliferative capacities. Additional cellular changes
enable these cells to acquire migratory and invasive capacities so
as to undergo transformation into either invasive evCTB, ‘physio-
logical metastasis’, or malignant cells capable of metastasizing.
To accomplish this transformation, the two types of cells utilize
similar operational strategies, involving changes in the physical
coupling of cells to their microenvironment and activation of
extracellular proteases. As might be expected, in addition to pro-
ducing proteinases that degrade the ECM, all highly invasive cells,
including evCTB cells, share an altered adhesion molecule pheno-
type (Plantefaber and Hynes, 1989; Albelda et al., 1990; Giancotti
and Ruoslahti, 1990; Behrens et al., 1993; Oka et al., 1993).

Altered adhesion molecule phenotype

Several classes of proteins involved in the tethering of cells to
their surroundings in a tissue are altered in cells possessing inva-
sive or metastatic functions (Hanahan and Weinberg, 2000). The
affected proteins include integrins, which link cells to ECM sub-
strates. Integrins are heterodimeric receptors resulting from com-
binatorial expression of various α- and β-receptor subunits. These
combinations lead to over 22 different integrin subtypes that have
distinct substrate preferences. Other affected proteins belong to
two different classes of cell–cell adhesion molecules (CAMs): the
first class comprises cadherins, which mediate Ca2+-dependent
cell–cell adhesion, and the second class comprises various adhe-
sion receptors belonging to the immunoglobulin family. Notably,
all of these cell adhesion receptors convey regulatory signals to
the cell (Aplin et al., 1998).

In effect, trophoblasts change their adhesive properties during
invasion. This occurs in vivo when the cytotrophoblast cells leave
their basement membrane to differentiate into evCTB cells. The
invasion of cytotrophoblasts leads to a decrease in the expression
of adhesion receptors characteristic of cytotrophoblast stem cells
and an increase in the expression of adhesion receptors that are
characteristic of vascular cells. Besides enabling cytotrophoblasts
that line the maternal vessels to masquerade as vascular cells,
these receptors also improve the ability of extravillous trophoblas-
tic cells to invade the uterine wall (Campbell et al., 1995; Damsky
and Fisher, 1998). Human cytotrophoblast stem cells within the
villi express α6β4 integrin, a receptor for epithelial laminin. As
they leave the basement membrane, they down-regulate the α6β4
integrin and begin to express the α5β1 integrin, a fibronectin
receptor, and move into the fibronectin-rich matrix of the invasive
cell columns (Redman, 1997). Within the uterine wall, they pro-
duce α1β1 integrin, a receptor for laminin and type IV collagen
that contributes to the acquisition of an invasive phenotype by
evCTBs (Damsky et al., 1992, 1994). Cytotrophoblasts also
express other integrins in response to the acquisition of invasive-
ness. In particular, cytotrophoblasts express αv integrins that seem
to be important in the formation of some types of metastatic

tumours (Redman, 1997). Integrin αvβ5 is characteristic of
vCTBs, whereas αvβ6 is only expressed on the cells at the base of
the invasive cell columns. evCTBs in the uterine interstitium and
maternal vasculature, like endothelial cells during angiogenesis,
express integrin αvβ3. Because the treatment of isolated cytotro-
phoblasts with antibody to integrin αvβ3 significantly hampers
their invasion, it was suggested that increased expression of this
integrin by evCTB in vivo stimulates their motility and invasive-
ness (Zhou et al., 1997b). In a similar way, changes in integrin
expression are also evident in invasive and metastatic cells. Dur-
ing their migration, invading and metastasizing cancer cells
experience changing tissue microenvironments that can present
novel matrix components. Accordingly, successful colonization of
these new sites (both local and distant) requires adaptation, which
is achieved through shifts in the spectrum of integrins displayed
by the migrating cells. Indeed, carcinoma cells facilitate invasion
by shifting their expression of integrins from those that favour
ECM present in normal epithelium to other integrins, including
αvβ3 that preferentially bind the degraded stromal components
produced by extracellular proteases. αvβ3 is the integrin
expressed by evCTBs in the uterine wall, and studies have impli-
cated integrin αvβ3 in the transition of cancer cells to an invasive
phenotype in vivo (Albelda et al., 1990; Felding-Habermann et al.,
1992; Irish et al., 2006), emphasizing the fact that normal cytotro-
phoblasts and cancer cells perform similar integrin switching to
acquire invasive capacities. Indeed, integrin ligation induces a
complex network of signalling pathways to control cell migration
(Guo and Giancotti, 2004). Integrin binding to ligands activates
FAK, which binds and activates multiple signalling proteins. FAK
autophosphorylation causes it to bind to adaptor growth-factor-
receptor-bound protein 2 (GRB2) and to activate another small G
protein, RAS. FAK activation also promotes SRC-dependent
phosphorylation of the adaptator protein SHC, leading to GRB2
recruitment and RAS activation. Activated RAS recruits RAF to
the cytoplasmic membrane, where it can be activated by protein
kinases such as SRC, thereby leading to mitogen-activated protein
kinase kinase (MEK) and ERK activation. Once activated by FAK
or SHC, RAS can activate PI3K and RAF. Activated SRC can also
phosphorylate CRK-associated substrate (CAS), leading to RAC
activation. Activated RAC, in conjunction with activated CDC42
and with activated ERK, can then regulate numerous biochemical
pathways that are necessary for the migratory phenotype (Hood
and Cheresh, 2002).

In addition to integrin receptor switching, a switch in the
expression of cadherins (another class of molecules implicated in
cell adhesion) also plays a significant role in the invasive proper-
ties of both normal trophoblasts and malignant cells. In the pla-
centa, the adhesion molecule E-cadherin mediates a strong
intracellular interaction between cytotrophoblasts, as it does in all
other normal epithelia (Birchmeier, 1995; Zhou et al., 1997a).
When cytotrophoblasts differentiate in cell columns and move into
the placental bed, E-cadherin expression is progressively lost.
Similarly, E-cadherin function is apparently lost in a majority of
epithelial cancers (Irish et al., 2006). Because E-cadherin serves as
a widely acting suppressor of invasion and metastasis by epithelial
cancers, its functional elimination represents a key step in the
acquisition of this capacity. Thus, cadherin modulation, like
integrin modulation, contributes to the acquisition of an invasive
phenotype by differentiating cytotrophoblasts (Damsky et al.,

 at Pennsylvania State U
niversity on February 23, 2013

http://hum
upd.oxfordjournals.org/

D
ow

nloaded from
 

http://humupd.oxfordjournals.org/


C.Ferretti et al.

Page 12 of 21

1994). Cadherins are generally regulated at both the mRNA
and the protein level by means of changes in subcellular distri-
bution, translational or transcriptional events and degradation.
Various signal transduction pathways impact the regulation of
E-cadherin levels and subcellular distribution. Very recently,
AKT, a downstream effector of PI3K, was shown to regulate
levels of E-cadherin mRNA and protein: at the molecular level,
AKT represses transcription of the E-cadherin gene. Moreover,
cells producing a constitutively active form of AKT produce a
transcription factor, Snail, which is known to repress the
expression of the E-cadherin gene (Grille et al., 2003; Larue
and Bellacosa, 2005).

A switch in the expression of different immunoglobulin super-
family adhesion receptors also accompanies the acquisition of
invasive capacities by both normal trophoblastic and neoplastic
cells. Cytotrophoblasts differentiating along the invasive path-
way up-regulate the expression of immunoglobulin superfamily
adhesion receptors characteristic of endothelial cells. Vascular
adhesion molecule-1 (VCAM-1), which interacts with integrins
α4β1 and α4β7, is not detected on vCTBs, but it is detected on
evCTBs within the uterine wall. Its expression on endovascular
cytotrophoblasts is particularly strong. vCTBs do not express
another member of the immunoglobulin superfamily adhesion
receptors, platelet endothelial adhesion molecule-1 (PECAM-1);
however, this adhesion molecule, which can interact with itself
or with αvβ3 (Piali et al., 1995), is expressed on cytotrophob-
lasts within cell columns. Cells involved in both interstitial and
endovascular invasion display particularly potent expression
(Zhou et al., 1997a). The highly invasive behaviour of these
evCTBs may account for the virtually unique ability to enter
blood vessels, displace resident endothelial cells and colonize
and remodel the arterial wall.

Changes in the expression of CAMs in the immunoglobulin
superfamily also appear to play a critical role in the processes of
invasion and metastasis (Johnson, 1991). The clearest case
involves N-CAM, which undergoes a switch in expression from a
highly adhesive isoform to poorly adhesive (or even repulsive)
forms in Wilms’ tumour, neuroblastoma and small cell lung can-
cer (Johnson, 1991; Kaiser et al., 1996) and a reduction in the
overall expression level in invasive pancreatic and colorectal can-
cers (Fogar et al., 1997).

Proteinase production

Decidual invasion by cytotrophoblasts results from classical steps
in cellular invasion, including attachment to the basement mem-
brane followed by detachment and proteolysis of the basement
membrane before its penetration. Thus, invasion is not due to pas-
sive growth pressure but rather due to active secretion of enzymes
capable of degrading the ECM in which the cells are embedded,
and cytotrophoblast cells are no exception (Fisher et al., 1985;
Bischof and Campana, 2000; Mock et al., 2000). Interestingly,
similar enzymatic mechanisms are shared by trophoblastic and
malignant cells in the invasive process, and the degradation of
basement membranes during metastasis is in part regulated by pro-
teolysis, often by the same proteases implicated in implantation
(Testa and Quigley, 1990; Leone et al., 1991; Strickland and
Richards, 1992). However, these enzymatic mechanisms are employed
in a highly concerted manner only in the trophoblast: in contrast to

that of tumours, the invasive behaviour of cytotrophoblasts is
acquired only transiently.

Early during implantation, trophoblastic cells from the outer
layer of the blastocyst invade the endometrium by secretion of
matrix-degrading proteases (Iruela-Arispe, 1997). ECM-degrading
proteinases, such as MMP-9 and uPA, regulate placental develop-
ment (Librach et al., 1991; Zhang et al., 1996). Later, after
implantation, evCTBs leaving the proliferative cell cluster acquire
an invasive phenotype that is characterized not only by a switch in
their adhesion molecule expression (Damsky et al., 1992; Zhou
et al., 1997b; Shih Ie et al., 2002) but also by the production of a set
of proteases: metalloproteinases (Vettraino et al., 1996; Hurskainen
et al., 1998; Mock et al., 2000), serine proteases (Liu et al., 2003)
and cathepsin (Divya et al., 2002), which degrade the ECM
(Lacroix et al., 2005). Indeed, invasive evCTB cells display ele-
vated expression of matrix-degrading proteinases, as do cancer
cells (Mignatti et al., 1986; Stetler-Stevenson et al., 1993;
Huppertz et al., 1998). For example, they increase their production
and activation of MMP-9 (gelatinase B, MMP-9), which contrib-
utes to the invasiveness of cytotrophoblasts in vitro (Librach et al.,
1991; Bass et al., 1997; Schatz et al., 1999). Cytotrophoblast pro-
duction and activation of MMP-9 peak during the first trimester,
coinciding with maximal invasive behaviour in vivo (Librach et al.,
1991; Bass et al., 1994; Cross et al., 1994; Shimonovitz et al.,
1994). Moreover, MMP-2 (gelatinase A, MMP-2) is also
expressed in evCTBs, but accumulating evidence suggests that
MMP-9 may play a more important role than MMP-2 in tro-
phoblast invasion during pregnancy and that MMP-9 expression/
activation is a prerequisite to evCTB invasion (Cohen et al.,
2006b). Thus, mechanisms regulating the expression of MMP-9
are important for evCTB invasion. MMP-9 secretion in invasive
cytotrophoblasts is stimulated by various factors including
TNF-α (Meisser et al., 1999) and EGF (Qiu et al., 2004a,b),
whereas TGF-β inhibits trophoblastic MMP-9 secretion
(Meisser et al., 1999). TIMPs are also important regulators of
MMP activity (Denhardt et al., 1993). Although several mem-
bers of the TIMP family have been identified, proteolysis by
MMP-9 is mostly regulated by the action of endogenous TIMP-
1 (Itoh and Nagase, 1995). Thus, it is noteworthy that EGF
induces the secretion of not only MMP-9 but also TIMP-1, iden-
tifying this growth factor produced by trophoblastic cells as one
of the key regulators of trophoblast invasion. Recently, it was
convincingly demonstrated in vitro that EGF induces MMP-9
and TIMP-1 secretion through simultaneous activation of both
the PI3K and MAPK signalling pathways in evCTBs, resulting
in the activation of several transcription factors (Qiu et al.,
2004a,b; Pollheimer and Knofler, 2005), as is the case in cancer
cells (Vivanco and Sawyers, 2002; Cully et al., 2006). For
instance, EGF activates the PI3K and MAPK/ERK pathways,
which modulate the activation of NFκB and AP-1, respectively,
in human head and neck squamous cell carcinoma lines (Bancroft
et al., 2002), whereas transcription factors Ets-1 and Ets-2 are
activated in response to EGF in human breast tumour cells
(Watabe et al., 1998).

Amongst serine proteases, the serine protease uPA promotes
matrix degradation by extravillous trophoblasts, and it was shown
that uPA stimulates human extravillous trophoblast migration by
using phospholipase C, PI3K and MAPK (Liu et al., 2003). Other
enzymes such as heparanase are secreted by trophoblasts and
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cancer cells and have been implicated in the invasive behaviour of
these cells (Vlodavsky et al., 1999; Dempsey et al., 2000). The
overexpression of heparanase cDNA in weakly metastatic tumour
cells confers high metastatic potential in experimental animals
(Vlodavsky et al., 1999), suggesting a critical role for heparanase
during cell invasion associated with tumour metastasis and angio-
genesis (Nakajima et al., 1988; Vlodavsky et al., 1999; Elkin et al.,
2001; Parish et al., 2001).

Finally, the activation of extracellular proteases and the altered
binding specificity of cadherins, CAMs and integrins are clearly

central to the acquisition of invasiveness by trophoblasts and to
the acquisition of metastatic ability by malignant cells. However,
the regulatory circuits and molecular mechanisms that govern
these shifts remain elusive and, at present, seem to differ from one
tissue environment to another.

Immune escape

To invade neighbouring tissues, normal trophoblastic and malig-
nant non-trophoblastic cells must escape effectors of the immune

Figure 3. Schematic map of major signalling pathways (molecular circuitries) that may be shared by both trophoblastic and malignant cells so as to acquire six
traits important for malignant growth: tissue invasion and metastasis (green), insensitivity to growth-inhibitory (antigrowth) signals (dark blue), sustained angiogen-
esis (red), self-sufficiency in growth signals (light blue), limitless replicative potential (brown) and evasion of programmed cell death (apoptosis) (orange)
(Hanahan and Weinberg, 2000; Hahn and Weinberg, 2002). This figure simplifies complex interacting regulatory networks. Casp, caspases; CDK, cyclin-dependent
kinase; CYC, cyclin; EGF, epidermal growth factor; erbB2, HER2/neu receptor tyrosine kinase; FAK, focal adhesion kinase; GRB2, growth-factor-receptor-bound
protein 2; HIF, hypoxia-inducible factor; IGF-1 and IGF-2, insulin-like growth factors 1 and 2; IRS1, insulin-receptor substrate 1; MAPK, mitogen-activated pro-
tein kinase; MEK, MAPK kinase; MEKK, MAPK kinase kinase; MET, hepatocyte growth factor/scatter factor (HGF/SF) receptor; MMP, matrix metalloprotein-
ase; MT-MMP, membrane-type matrix metalloproteinase; PDGF, platelet-derived growth factor PI3K, phosphatidylinositol 3-kinase; PIP3,
phosphatidylinositol(3,4,5)triphosphate; PTEN, phosphatase and tensin homologue; SHC, SRC-homology-2-domain transforming protein; SRC, Src family kinase;
STATs, signal transducers and activators of transcription; TGF-α, transforming growth factor-α; TGF-β, transforming growth factor-β; TIMP, tissue inhibitor of
metalloproteinase; TNF-α, tumour necrosis factor-α; TOR, target of rapamycin; uPA, urokinase plasminogen activator.
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system. Remarkably, maternal immune surveillance of foreign
cell-surface antigens fails to reject the embryonic conceptus des-
pite the expression of paternal antigens on trophoblasts. The pla-
centa separates fetal and maternal blood and lymphatic systems,
and it is the fetal trophoblast that plays the most important role in
the evasion of recognition by the maternal immune system
(Weetman, 1999). Trophoblast cells fail to express major histo-
compatibility complex (MHC) class I or class II molecules. Simi-
larly, MHC class I down-regulation is an important mechanism in
tumour escape from T-cell-mediated immune responses: approxi-
mately 40–90% of human tumours have been reported to be MHC
class I deficient (Bubenik, 2003). Moreover, evCTB cells strongly
express the non-classic MHC gene encoding HLA-G, which may
down-regulate natural killer (NK) cell function. Using other mech-
anisms, tumours induce, in NK cells, the same inactivating reac-
tions that the fetal trophoblast engenders in utero (Sinkovics and
Horvath, 2005). In addition, the trophoblast expresses the Fas lig-
and (FasL/CD95L), thereby conferring an immune privilege (a
property of some sites in the body whereby immune responses are
limited or prevented): maternal immune cells expressing Fas will
undergo apoptosis at the placental/decidual interface. Tumour
cells frequently exhibit de-novo expression of Fas ligand. Coupled
with resistance to Fas-mediated apoptosis, FasL expression ena-
bles many cancers to deliver a pre-emptive strike against or to
‘counterattack’ the immune system (Houston and O’Connell,
2004). However, a role for FasL in immune privilege has been
challenged (Green and Ferguson, 2001).

Corresponding molecular circuitries of proliferation, 
migration and invasion

Cells respond to extracellular stimuli through a series of signalling
cascades. From receptor activation to a biological effect, each sig-
nal follows a pathway recruiting effectors and adapters, varieties
of proteins that interact with each other and generating a cascade
of sequential steps (Knofler et al., 2005). Some pathways are lin-
ear, whereas others are branched, and some are linked to others to
induce specific or redundant events. However, most of the time,
signalling molecules are common to several pathways, forming a
complex intracellular network (Knofler et al., 2005). Under inten-
sive study for two decades, the wiring diagram of the signalling
circuitry of the mammalian cell, while incomplete, is coming into
focus, and it is now possible to lay out a circuitry that will likely
mimic electronic integrated circuits (Hanahan and Weinberg,
2000). Moreover, it was suggested that most and perhaps all types
of human tumours share six essential alterations in cell physiology
that collectively dictate malignant growth: self-sufficiency in GS,
insensitivity to growth-inhibitory (antigrowth) signals, evasion of
programmed cell death (apoptosis), limitless replicative potential,
sustained angiogenesis and tissue invasion and metastasis. An
overview of signalling circuitries used by trophoblast cells,
although simplistic, places emphasis on the many circuitries
shared with those employed by cancer cells (Figure 3). As virtu-
ally all mammalian cells carry similar molecular machinery regu-
lating their proliferation, differentiation and death (Hanahan and
Weinberg, 2000) and as most regulatory and effector components
are present in a redundant form, it is not totally surprising that nor-
mal trophoblasts and malignant cells, which may have to accom-
plish comparable tasks to proliferate and migrate so as to

ultimately invade neighbouring tissue, use, in part, similar regula-
tory and effector components, similar circuitries and similar mech-
anisms, even though the finale of these processes is strikingly
different. Moreover, it should be recalled that the main difference
between normal trophoblast development and malignant transfor-
mation is that cellular and molecular events follow highly regu-
lated spatial and temporal plans during trophoblast development,
whereas during malignant transformation, the order of events may
be stochastic and time independent or particular events may be
bypassed.

Conclusion

The ability of trophoblast cells to proliferate and then to migrate
and invade the uterine wall, as well as the many common charac-
teristics shared by normal trophoblast cells and malignant cells,
makes them ideal for monitoring molecular changes taking place
during the acquisition of a migrating/invasive phenotype. Moreo-
ver, normal trophoblast can be transformed into hydatidiform
mole, a highly proliferative benign trophoblastic disease (Berkowitz
and Goldstein, 1996), and into choriocarcinoma, one of the most
metastatic tumours known (Strickland and Richards, 1992).
Chorionic tumours are characterized by progressive loss of control
of the proliferation, migration and invasion normally achieved by
trophoblast cells. Taken together, trophoblast cells from normal
placenta, hydatidiform mole and choriocarcinoma constitute a
unique and fascinating model for studying mechanisms involved
in these processes. Careful analysis and comparison of different
trophoblast model systems will help gain valuable insight not only
into the exciting area of trophoblast research but also into the vast
field of cancer research.

Indeed, we are likely to derive much more from the trophoblast
than simply the elucidation of the molecular mechanisms control-
ling migration and invasion processes. The parallel between these
cells, which form the basis of life, and malignant cells, which bear
the possibility of death, offers us an occasion for reflection, not
without irony, on the value of human existence and its inherent
fragility.
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