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Although advances have been made, chemotherapy for chronic, multifactorial diseases such as cancers, Alzheimer’s disease, 
cardiovascular diseases and diabetes is far from satisfactory. Agents with different mechanisms of action are required. The bo-
tanic compound berberine (BBR) has been used as an over-the-counter antibacterial for diarrhea in China for many decades. 
Recent clinical studies have shown that BBR may be therapeutic in various types of chronic diseases. This review addresses 
BBR’s molecular mechanisms of action and clinical efficacy and safety in patients with type 2 diabetes, hyperlipidemia, heart 
diseases, cancers and inflammation. One of the advantages of BBR is its multiple-target effects in each of these diseases. The 
therapeutic efficacy of BBR may reflect a synergistic regulation of these targets, resulting in a comprehensive effect against 
these various chronic disorders. The safety of BBR may be due to its harmonious distribution into those targets. Although the 
single-target concept is still the principle for drug discovery and research, this review emphasizes the concept of a multiple 
target strategy, which may be an important approach toward the successful treatment of multifactorial chronic diseases. 
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Berberine (BBR; Figure 1) is a natural compound isolated 
from Chinese herbs such as Coptis chinensis and Berberis 
vulgaris [1]. BBR has a molecular weight (MW) of  
336.37 Da and can be easily obtained from plants or 
through de novo synthesis [1,2]. It has anti-bacterial proper-
ties [3], and owing to its excellent safety profiles in humans, 
BBR has been utilized for many decades in China as an 
over-the- counter medicine for bacterial diarrhea. Recent 
studies have indicated that BBR may be effective in treating 
chronic, multifactorial diseases, including diabetes, hyper-
lipidemia, heart diseases, cancers and inflammatory diseases. 
In addition, laboratory studies have identified several mol-
ecules and signaling pathways that account for its therapeu-

tic effects.  
This review summarizes recent studies showing the clin-

ical effects of BBR in diseases other than bacterially-caused 
diarrhea. Importantly, these studies indicate that the clinical 
effects of BBR are due to multiple molecules and/or mech-
anisms. Treatment of multifactorial chronic diseases with 
agents that regulate multiple molecular targets may be par-
ticularly effective in the future. 

1  Diabetes 

The glucose-lowering properties of BBR were first ob-
served in 1986 [4]. Although the mechanism has not yet 
been fully determined, it was found to be related to several  
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Figure 1  Chemical structure of berberine, a botanic compound with 
multiple effects against chronic diseases in humans. 

molecular mechanisms and signaling pathways. For exam-
ple, BBR could activate the AMP-activated protein kinase 
(AMPK) pathway through mitochondrial inhibition [5], 
decreasing fasting blood glucose concentration. In addition, 
BBR could up-regulate the level of expression of the insulin 
receptor (InsR) gene in liver and muscle cells, in a protein 
kinase D (PKD)-dependent manner, restoring their insulin 
sensitivity [6]. BBR was shown to inhibit PTP1B and in-
crease the phosphorylation of InsR, insulin receptor sub-
strate 1 (IRS1) and Akt [7]. Moreover, BBR was found to 
inhibit liver gluconeogenesis while promoting the differen-
tiation of adipocytes, resulting in a net increase in glucose 
utilization [8]. Recent studies have suggested that gut mi-
crobiota may be involved in the mechanism by which BBR 
reduces blood glucose and lipid concentrations [9,10]. 

Clinical reports have shown that BBR is safe and effec-
tive in treating type 2 diabetic patients [11]. In general, 
BBR alone lowered fasting blood glucose concentrations by 
21%36%, comparable to the effects of metformin and 
rosiglitazone [11,13]. In addition, a clinical study in Italy 
suggested that BBR, when combined with standard glu-
cose-lowering agents, such as metformin or sulfonylureas, 
demonstrated additive glucose-lowering efficacy in type 2 
diabetic patients [12]. The main advantage of this botanic 
compound is its safety profile when compared with chemi-
cally synthesized glucose-lowering drugs such as rosiglita-
zone and metformin. For example, although the latter is not 
suitable for patients with chronic hepatitis and type 2 diabe-
tes because it could lead to further deterioration in liver 
function, BBR was safe and effective, improving liver func-
tion in these patients while lowering blood glucose concen-
tration [13]. In addition, animal experiments showed that 
BBR may have benefits in treating diabetic complications, 
such as endothelial dysfunction, diabetic nephropathy, and 
diabetic neuropathy [14].  

2  Hyperlipidemia 

BBR was first shown in 2004 to have lipid-lowering proper-
ties in animals as well as in hyperlipidemic patients [1]. 
Mechanistic studies have shown that BBR activates the ex-
tracellular-signal regulated kinase (ERK) pathway, stabiliz-
ing low-density-lipoprotein receptor (LDLR) mRNA and 
therefore increasing LDLR expression on the surface of 
hepatocytes [1]. This novel cholesterol-lowering mechanism 
differs from that of statin drugs. Detailed studies have 
shown that the activity of BBR is due to its effect on the 
responsive elements located in the LDLR mRNA 3′UTR 
region [1]. In addition, BBR was found to down-regulate 
the transcription of the gene encoding proprotein convertase 
subtilisin kexin 9 (PCSK9), a natural inhibitor of LDLR, 
suggesting another mechanism by which BBR increases 
LDLR expression [15]. BBR was also found to improve 
lipid dysregulation and prevent fatty liver by promoting the 
activity of AMPK [16], which has been reported to inhibit 
lipid synthesis [17]. 

Although to date no large-scale randomized double-blind 
clinical trials have been documented, the lipid-lowering 
effects of BBR have been validated by a number of inde-
pendent clinical groups in and outside China. In general, 
BBR reduces total cholesterol concentrations by 13%31%, 
LDL cholesterol concentrations by 10%25%, and triglyc-
eride concentrations by 20%35% [1,11,22], with one study 
reporting that BBR elevates HDL cholesterol concentrations 
[11]. The anti-lipid mechanism of BBR differs from that of 
statins, which increases LDLR expression by inhibiting 
HMG-CoA-reductase [18]. Thus, unlike statins, BBR has no 
adverse effects on liver or muscle tissue. This is of particu-
lar significance for Asian populations, which are at high risk 
for the adverse effects of statins [19]. BBR is also useful in 
controlling lipid concentrations in patients with liver dis-
eases, such as hepatitis B and C and liver cirrhosis [20], as 
statins increase liver enzyme concentrations in some pa-
tients [21]. Interestingly, BBR had a more pronounced ef-
fect on triglyceride concentrations than did statins [22]. The 
clinical advantages of BBR may result from its effects on 
multiple pathways of lipid and glucose metabolism [23].  

3  Heart diseases 

Laboratory research has shown that BBR possesses positive 
inotropic, anti- arrhythmic and vasodilator properties related 
to the cardiovascular system [24] by, for example, prolong-
ing the duration of ventricular action potential [24,25]. The 
effects of BBR are due, at least in part, to preferential 
blockage of the components of the delayed rectifying potas-
sium current, I(Kr) and I(Ks) [25]. BBR may also act by 
stimulating the Na+-Ca2+ exchanger [24]. Furthermore, BBR 
preferentially blocks the open state of hERG channels by 
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interacting with specific residues [24]. Its vasodilator activ-
ity may result from undetermined multi-cellular mecha-
nisms, which may be associated with the AMPK pathway 
and endothelial nitric oxide synthase [26]. Taken together, 
these cardiovascular effects of BBR support its clinical use 
in patients with heart failure or arrhythmias.  

A randomized clinical trial tested the effects of BBR in 
156 patients with chronic congestive heart failure [27]. Of 
these patients, 79 were and 77 were not treated with BBR, 
with all patients receiving conventional therapeutic regi-
mens, consisting of angiotensin-converting enzyme inhibi-
tors, digoxin, diuretics, and nitrates. The BBR-treated group 
showed significantly greater increases in left-ventricular- 
ejection-fraction (LVEF) and exercise capacity, significant 
improvements on the dyspnea-fatigue index, as well as de-
creased rates of ventricular premature complexes (VPCs) 
and long-term mortality (P<0.02). A second clinical trial 
yielded similar results [28]. 

Treatment of 100 arrhythmic patients with BBR (300 mg, 
qid) for 14 weeks resulted in a >89% reduction in prema-
ture beating in 62 patients, and >50% in the other 38 pa-
tients, indicating that BBR significantly reduced premature 
beating [29]. These results were later independently repro-
duced [30]. 

4  Cancer 

BBR has been reported to have apoptotic activity in a vari-
ety of human tumor cell lines, including hepatoma, colon 
cancer, lung cancer, breast cancer, and leukemia cell lines 
[31]. BBR may act on cancer cell DNA, DNA replication 
enzymes (e.g., telomerase, DNA topoisomerase), matrix 
metalloproteinases (MMPs) in mitochondria, the Bcl2/Bax 
ratio, p53, and apoptosis inducing factor (AIF) [31]. Alt-
hough, to our knowledge, the in vivo anticancer activities of 
BBR have not been documented to date, clinical studies 
have shown its potential in supporting radiation therapy for 
cancer. For example, a randomized clinical trial involving 
78 cancer patients receiving abdominal or whole pelvic ra-
diotherapy showed that, compared with patients who did not 
receive BBR, those pretreated or treated with BBR (300 mg 
kg1, tid) experienced significant decreases in the incidence 
and severity of radiation-induced acute intestinal symptoms 
(RIAIS; P<0.05) [32]. This suggests that BBR has a sup-
porting effect in patients on radiation therapy. In another 
randomized double-blind trial [33], 90 patients with 
non-small cell lung cancer (NSCLC) were randomized 1:1 
to radiation therapy plus BBR or radiation therapy plus pla-
cebo for six weeks. The rates of radiation-induced lung in-
jury (RILI) six weeks and six months later were signifi-
cantly reduced in the BBR group, whereas pulmonary func-
tion was significantly improved [33]. Despite these effects, 
the molecular mechanism of action of BBR remains un-
clear.  

A clinical study assessed the effects in 21 breast cancer 
patients of cholesterol-lowering natural products on sec-
ondary dyslipidemia, which frequently persists after life 
style changes in patients on hormone-therapy following 
breast cancer (HT-BC) [34]. BBR plus Red Yeast Rice (AP), 
combined with diet, reduced total cholesterol, LDL and tri-
glyceride concentrations and was well tolerated by these 
patients.  

5  Inflammatory diseases 

The anti-inflammatory effects of BBR have been observed 
in a variety of human and animal tissues, including the liver 
[35], adipose tissue [36], vascular endothelial cells [37], and 
intestine [38]. Although the detailed mechanisms remain to 
be determined, BBR was shown to reduce the levels of ex-
pression of genes encoding pro-inflammatory cytokines, 
including tumor necrosis factor-α (TNF-α), interleukins 
(ILs), prostaglandins (PGs), cyclooxygenase-2 (COX-2), 
and inducible nitric oxide synthase (iNOS), in an 
AMP-activated protein kinase (AMPK)-dependent manner 
[39]. Moreover, the anti-inflammatory effects of BBR in-
volved inhibition of the nuclear factor-kappa B (NF-κB) 
pathway [40]. For example, in cultured cells, BBR sup-
pressed lipopolysaccharide (LPS)-induced NF-κB activation 
and subsequent inflammation [40]. 

As inflammation is a key factor in the pathophysiological 
process of metabolic disorders, cardiovascular diseases and 
cancers [41], the anti-inflammatory activity of BBR may 
result in beneficial effects against these disorders. The an-
ti-inflammatory effects of BBR in treating diabetes have 
been assessed in relative depth. BBR was found to block the 
development of type 1 diabetes in NOD mice through its 
anti-inflammatory and immune regulatory properties [42]. 
In addition, BBR inhibited the expression of pro-      
inflammatory cytokines in adipose tissues of db/db diabetic 
and obese mice [39]. A clinical report analyzed the an-
ti-inflammatory effects of BBR in Chinese patients with 
type 2 diabetes [43], finding that BBR treatment for three 
months significantly reduced serum concentrations of 
pro-inflammatory cytokines, such as TNF-α and IL-6, as 
well as reducing blood glucose concentrations and restoring 
insulin sensitivity [43]. The anti-inflammatory effects of 
BBR have also been observed in patients with coronary 
heart disease. BBR treatment for 30 d, following standard 
intervention, reduced serum inflammatory markers, as well 
as lipid concentrations, in patients with acute coronary syn-
drome (ACS) [44]. 

These anti-inflammatory properties of BBR account, at 
least in part, for its pharmacological efficacy against dis-
eases such as diabetes and cardiovascular disorders. How-
ever, its molecular mechanisms, the cellular signaling 
pathways involved and the clinical significance of this anti- 
inflammatory activity of BBR require further study. 
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6  Other conditions 

BBR also has effects on the nervous system. In animal 
models, for example, BBR treatment was shown to improve 
brain function (memory and learning capacity) and to re-
lieve depression [4547]. As these activities have not yet 
been verified in humans, they are not further discussed in 
this review.  

7  Perspectives 

Single-target therapy has been the mainstay of mole-
cule-based drug discovery, with the goal of reducing unde-
sired side-effects of administered agents. This strategy has 
achieved success in the treatment of viral infections, such as 
HIV-1, HBV and HCV, using reverse transcriptase, protease, 
and integrase inhibitors. Drugs highly selective for single 
targets have also shown clinical benefits in treating 
non-infectious chronic diseases; however, their therapeutic 
efficacy is often transient, eventually failing because pa-
tients develop drug-resistance and/or side-effects.  

A recent example is the withdrawal (and limited use) of 
thiazolidinediones (TZDs), a class of selective agonists of 
peroxisome proliferator-activated receptor gamma (PPARγ) 
with glucose-lowering effects in patients with type 2 diabe-
tes [48]. Side-effects of TZDs were observed in the cardio-
vascular, hepatic, and urinary systems [4951]. The potency 
and selectivity of the TZD drugs toward PPARγ correlate 
positively with their side-effects [51]. The phenomenon was 
also seen with the cyclooxygenase-2 (Cox2) inhibitors, 
rofecoxib and valdecoxib [5254]. 

In contrast, BBR has various therapeutic effects, with 
multiple molecular mechanisms of action. For example, 
BBR has several activities in patients with energy-related 
metabolic disorders, such as hyperlipidemia and type 2 dia-
betes, acting through several pathways. BBR up-regulates 
LDLR by activating ERK and inhibiting PCSK9, reduces 
lipid synthesis and increases glucose consumption by acti-
vating AMPK, up-regulates InsR by activating PKD, and 
decreases insulin resistance by inhibiting PTP1B and 
mTOR. These molecules may be components of an intact 
network that regulates cellular energy metabolism. The ef-
fectiveness of BBR on metabolic disorders in patients has 
been widely documented by independent clinical groups, 
both inside and outside China; this therapeutic efficacy rep-
resents the synergistic effectiveness of these molecules or 
pathways regulated by BBR.  

Two hypotheses may explain the multiple-target nature 
of BBR. First, as BBR is a small-molecular-weight com-
pound, it may be a ligand that docks into pockets of a num-
ber of proteins. Second, BBR can bind to nucleic acids, 
such as dsRNA. As miRNA molecules play a key role in 
controlling the expression of different genes, BBR in its 

planar form [57] might bind to grooves on the 3D structure 
of RNA [55,56]. 

BBR has shown good safety results in human applica-
tions [1,11]. Despite having significant clinical efficacy, the 
potency of its biological activity against each target is con-
sidered moderate. A balanced distribution of the chemical 
energy of BBR into those targets may account for its safety, 
making “Yin and Yang” balanced in the body.  

Drugs with multiple-targets, such as aspirin, steroids and 
metformin, are often used to successfully manage illnesses. 
Therefore, although the specific- or selective-target ap-
proach still dominates, a multiple-targeted strategy might be 
a promising avenue in drug discovery, particularly for 
chronic diseases associated with multiple factors.  

This review was partially supported by the National Mega-Project for 
Drug Research & Development, China (to Jiang JianDong). 
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