Treating Thyroid Despite Normal Labs

Jacob Teitelbaum MD and Kent Holtorf MD

The physician consultant opines that only patients with labs out side the normal range should be treated and to give thyroid support when this is not the case is outside of the standard of practice. This was stated despite a large number of studies given showing that this is not the case. This patient likely has a combination of secondary or tertiary and primary hypothyroidism (as discussed below). But, even if there was no central hypothyroidism involved, treatment is indicated.

Clinically, this patient had numerous signs and symptoms of hypothyroidism including:

1. A 40 lb weight gain with inability to lose weight
2. Elevated cholesterol
3. Severe fatigue
4. Periorbital oedema
5. Constipation
6. Severe widespread achiness / pain
7. Constipation
8. Arthralgias
9. Cognitive dysfunction
10. Dry skin
11. Paresthesias
12. Slow relaxation phase of the ankle reflex (SRPAR)

In a study published in the Journal of Endocrinology and Metabolism, the SRPAR was found in 77% of individual with tissue hypothyroidism and in only 6.5% of normals; dry skin was found in 76% of individuals with tissue hypothyroidism and in 36.2% of normals; course skin was found in 60% of individuals with tissue hypothyroidism and only 18.8% of normals; periorbital puffiness was found in 60% of individuals with tissue hypothyroidism and only 3.7% of normals; constipation was found in 48% of individuals with tissue hypothyroidism and only 15% of normals; and constipation was found in 48% of individuals with tissue hypothyroidism and only 15% of normals (150). The combination of these signs and symptoms is highly specific for the presence of thyroid dysfunction and a diminished end-organ thyroid effect. Another study published in the British Medical Journal also found that SRPAR was a better indicator of tissue hypothyroidism than thyroid function tests (TFT’s)(153).

While treatment with thyroid hormone is clearly indicated in this patient and with treatment, the patient would be expected to have symptomatic improvement as well as a reduction of numerous disease risk, this certainly will not, on its own, be effective without addressing the multiple physiologic abnormalities present in CFS.

Numerous studies have demonstrated a central hypothyroidism in the overwhelming majority of patients with FM and CFS. For instance, a study published in the peer reviewed Journal of Rheumatology looked at the incidence of central hypothyroidism in patients with FM (6). They found, through the use of thyrotropin releasing hormone (TRH) testing, that all of the patients studied with FM had central hypothyroidism despite having baseline thyroid function tests (TFT’s) in the normal range. They found that these patients with central hypothyroidism tended to have low normal TSH levels that averaged 0.86 vs 1.42 in normals with normal free T4 and free T3 levels. The free T4 levels were slightly higher in the patients with central hypothyroidism and the free T3 levels were slightly lower in patients with central hypothyroidism. With appropriate replacement, the TSH is usually low, undetectable or low normal so this is not by itself an indication of hyperthyroidism or over-treatment in this patient population. A TRH stimulation test would have been ideal to perform, but TRH is currently unavailable for clinical use.

Other studies confirm the fact that standard TFT’s cannot be used to rule out central hypothyroidism, as they are generally undifferentiable from euthyroid individuals (6,8,119). One such study clearly demonstrating this fact was published in the Journal of Clinical Endocrinology and Metabolism where it was determined how often central hypothyroidism went undetected by standard TFT’s (119). They found that 92% of patients with central
hypothyroidism would have remained undiagnosed using baseline TFT’s. Thus, it is incorrect to conclude that thyroid replacement is not appropriate in this patient if he had TFT’s in the normal range. Therefore, the utility of such testing is very low and would not be an effective means of directing treatment.

A study published in *The Lancet* performed thyroid biopsies in patients with chronic fatigue and found that 40% of these patients had lymphocytic thyroiditis, with only half of these being positive for TPO or antithyroglobulin antibodies (thus going undetected). They also found that “clinical response to thyroxine was equally favorable among patients with lymphocytic thyroiditis, irrespective of initial thyrotropin (TSH) concentrations (120).” This demonstrates that many of these patients with CFS and FM have a thyroiditis that is not detectable by standard auto-antibody testing and that such patients respond to thyroid replacement regardless of their baseline TFT’s.

Another study published in the *Journal of Chronic Fatigue Syndrome* demonstrated that due to the hypothalamic and pituitary dysfunction present in FM patients, multiple hormone replacement, including thyroid, is appropriate, safe and effective despite baseline levels being in the normal range. Numerous other studies have also been published that support the appropriateness and safety of this treatment (13).

There is controversy as to the usefulness of follow-up TFT’s, especially in patients with CFS and central hypothyroidism (13,152,153,119,121,122,123,124,125,154). A study published in the *British Medical Journal* found that for individuals who had overtly abnormal thyroid tests initially, but normal labs with treatment with thyroid replacement, the evaluation of clinical symptoms by doctors experienced in thyroid disease was a more accurate measurement of end-organ thyroid effect than TSH, free T4 or Free T3 levels (151). This is also especially and more certainly true of individuals with any degree of central hypothyroidism as in this case. The authors state, “To establish their role in monitoring patients receiving thyroxine replacement biochemical tests of thyroid function were performed in 148 hypothyroid patients studied prospectively. Measurements of serum concentrations of total thyroxine, analogue free thyroxine, total triiodothyronine, analogue free triiodothyronine, and thyroid stimulating hormone, made with a sensitive immunoradiometric assay, did not, except in patients with gross abnormalities, distinguish euthyroid patients from those who were receiving inadequate or excessive replacement. These measurements are therefore of little, if any, value in monitoring patients receiving thyroxine replacement (151).”

There are additional reasons that baseline and also follow-up TFT’s are of limited use in treatment of patients with CFS and FM (127-143). For example, a low TSH does not necessarily indicate excessive thyroid therapy or hyperthyroidism, again showing that the reviewer’s insistence that any one who relies on anything except the tests, including clinical signs and symptoms, is practicing outside of the standard of practice. Even in normal individuals without CFS or FM, a suppressed TSH requires clinical correlation. For instance, a study published in the *British Medical Journal* demonstrated that the false positive rate that a suppressed TSH indicates hyperthyroidism in someone on thyroid replacement is 80% (151).

The positive predictive value that a suppressed TSH indicates hyperthyroidism in normal individuals with primary thyroid failure is:

Positive predictive value (PPV) = \[
\frac{\text{sensitivity} \times \text{prevalence}}{(100 \times \text{specificity}) \times (100 \times \text{prevalence})) + (\text{sensitivity} \times \text{prevalence})}\
\]

\[
\frac{59 \times 20}{(100-51) \times (100-20) + (59 \times 20)} = 23\%\
\]

Thus, a person on thyroid replacement with a suppressed TSH has only a 23% chance of being hyperthyroid. In addition, if a person has any degree of central hypothyroidism, as in this case, the suppressed TSH is meaningless (127,128,129,139,131,132,133,134,135,136,137,138,139, 140,141,142,143). The most
appropriate and accurate means of monitoring adequate replacement in these patients is a careful assessment of clinical response. For a given level of T4 and T3 in the serum, the pituitary and heart will always have a higher intracellular level of T3 than any other tissue (161,162). This is why the first change with subclinical and frank hyperthyroidism is a suppressed TSH (although meaningless with hypothalamic and pituitary dysfunction seen in CFS and FM) and an increase in heart rate (162,163). Excessive reliance on laboratory values and ignoring the clinical picture can lead to an improper assessment and inaccurate diagnosis.

Blindly treating a lab value without a thought of the underlying pathophysiology or clinical correlation does not exemplify the practice of good medicine. It is for that reason that I analyze the entire picture, identify all of the underlying issues, assess correlation and treat with a multiprong approach for the most effective outcomes.

In addition, it has been shown that these patients with central hypothyroidism secrete a TSH that is less bioactive than normal TSH (127-143,151,152,153). This decreased bioactivity is not detected on 3rd generation or other standard TSH assays. This results in a lower level of T4 and T3 for any given concentration of TSH. This is why the TSH is not reliable in central hypothyroidism and that you must suppress the TSH in order to even begin to achieve tissue euthyroidism (127-143,149,151,152,153). A landmark study by Escobar published in the Journal of Clinical Investigation measured the tissue level of T3 in 10 different tissues during T4 thyroid replacement. They found that all tissues except the brain (including the pituitary) required supraphysiological levels of plasma T4 to provide normal tissue levels of T3. Doses of T4 that normalized plasma T4 and T3 levels were insufficient to normalize the concentration of T3 in most tissues. A notable exception was the brain (pituitary), which showed a remarkable degree of independence from plasma T4 and T3 levels and other tissue concentrations of T4 and T3. As some amounts of T4 infused, the level of thyroid hormones in the pituitary was over twice that of other tissues, again demonstrating that pituitary levels and thus TSH secretion is not an accurate measure of tissue hypothyroidism. The authors conclude, “It is evident that neither plasma T4 nor plasma T3 levels alone permit prediction of the degree of change in T4 and T3 concentrations in tissues... The current replacement therapy of hypothyroidism should no longer be considered adequate, and might possibly lead to the development of new strategies of therapy...(155)”

It was originally believed that thyroid hormones enter the cells by passive diffusion, but it is now clear that cellular uptake is via a carrier-mediated process (156,157,158,159) and studies are demonstrating the presence of a thyroid resistance in CFS and FM, possibly secondary to a defect in the transport system, further limiting the utility of TFT’s in evaluation of tissue levels of thyroid (121,122,123,124,125,126,165). Consequently, the multiple uncertainties and variables associated with a combination of primary hypothyroidism, central hypothyroidism and thyroid resistance make the most appropriate method of monitoring adequate tissue levels of thyroid a knowledgeable physician’s clinical assessment (121-153,165). A number of double blind placebo controlled trials have demonstrated that follow-up TFT’s are of little help in determining tissue euthyroidism in these patients and have demonstrated the superiority of clinical assessment over TFT in these patients (123,124,125,126,134,13,165).

Endocrinology texts are clear that if there is any degree of hypothalamic or pituitary dysfunction, as with this patient, the recommended method of monitoring thyroid replacement is by clinical assessment as the TSH is meaningless and should be suppressed with proper dosing (162,165,168).

Footnotes and References

7. Jens Gaab, PhD, Dominik Hüster, MSc, Renate Peisen, MSc, Veronika Engert, BSc, Vera Sheitz, BSc, Tanja Schad, BSc, Thomas H. Schürmeyer, PhD, MD and Ulrike Ehlerd, PhD. Hypothalamic-Pituitary-Adrenal Axis Reactivity in Chronic Fatigue Syndrome and Shealth Under Psychological, Physiological, and Pharmacological Stimulation. Psychosomatic Medicine 64:951-962 (2002).

21. Garth L, Nicolson, PhD, Marwan Y, Nasralla,2 PhD, Kenny De Meirleir,3 MD, PhD and Jeorg Haier,4 MD, PhD. Bacterial and Viral Co-Infections in Chronic Fatigue Syndrome (CFS/ME) Patients. Proc. Clinical & Scientific Conference on Myalgic Encephalopathy/Chronic Fatigue Syndrome, the Practitioners Challenge, Alison Hunter Foundation, Sydney, Australia 2002

22. Jo Nijs 1, MSc; Garth L Nicolson 2, PhD; Pascale De Becker 1, PhD; Danny Coomans 3,4, PhD; Kenny De Meirleir 1, 3, MD, PhD. High Prevalence of Mycoplasma infections among European Chronic Fatigue Syndrome patients: Examination of four Mycoplasma species in blood of Chronic Fatigue Syndrome patients. FEMS Immunol Med Microbiol 2002; 34:209-214

54. Cleare AJ; Bearn J; Allain T; McGregor A; Wessely S; Murray RM; O'Keane V. Contrasting neuroendocrine responses in depression and chronic fatigue syndrome, J Affect Disord, 1995 Aug 18, Issue: 4 Volume: 34 Page: 283-9

55. Moutschen M; Triffaux JM; Demonty J; Legros JJ; Lefèbvre PJ; Pathogenic tracks in fatigue syndromes Acta Clin Belg, 1994, Issue: 6 Volume: 49 Pagination: 274-89 ISSN: 0001-5512

68. Bender CE. The value of corticosteroids in the treatment of infectious mononucleosis. JAMA 199;529, 1967

71. McKenzie et al. Low-Dose Hydrocortisone for Chronic Fatigue Syndrome. 281 No. 20, May 26, JAMA,1999 Vol. 281 No. 20, May 26, 1999

74. Naschitz JE et al. The head-up tilt test with haemodynamic instability score in diagnosing chronic fatigue syndrome. QJ Med 2003;96:133-142

78. McDermott M Ridgway C. CLINICAL PERSPECTIVE: Subclinical Hypothyroidism Is Mild Thyroid Failure and Should be Treated. The Journal of Clinical Endocrinology & Metabolism 86(10):4585–4590

88. Misiunas A, Ravaera HN, Faraj G, Faure E 1995 Peripheral neuropathy in subclinical hypothyroidism. Thyroid 5:283–286

89. Goulis DG, Tsimpiris N, Delaroudis S, et al. 1998 Stapedial reflex: A biological index found to be abnormal in clinical and subclinical hypothyroidism. Thyroid 8:583–587

90. Beyer IW, Karmali R, DeMeester-Mirkine N, Cogan E, Fuss MJ 1998 Serum creatine kinase levels in overt and subclinical hypothyroidism. Thyroid 8:1029–1031

100. Arem R, Rokey R, Kiefe C, Escalante DA, Rodriguez A 1996 Cardiac systolic and diastolic function at rest and exercise in subclinical hypothyroidism: Effect of thyroid hormone therapy. Thyroid 6:397–402

101. Monzani F, Di Bello V, Caraccio N, et al. 2001 Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind,

113. Bo Isomaa, MD1, Peter Almgren, MSC2, Tiinamaija Tuomi, MD3, Björn Forsén, MD4, Kaj Lahti, MD5, Michael Nissén, MD6, Marja-Riitta Taskinen, MD3 and Leif Groop, MD7 Cardiovascular Morbidity and Mortality Associated With the Metabolic Syndrome Diabetes Care 24:683-689, 2001

119. Rose SR; Lustig RH; Pitukcheewanont P; Broome DC; Burghen GA; Li H; Hudson MM; Kun LE. Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab 1999 Dec;84(12):4472-9

128. YC Patel and HG Burger Serum thyrotropin (TSH) in pituitary and-or hypothalamic hypothyroidism: normal or elevated basal levels and paradoxical responses to thyrotropin-releasing hormone J Clin Endocrinol Metab 1973 37: 190-196.

136. Joshi LR et al. 1983. natural occurring forms of thyrotropin with low bioactivity and altered
carbohydrate metabolism act as competitive antagonist. Endocrinology 113:2145-2145-2154

137. Weintraub BD, Stannard BS et al. Glycosylation and posttranslational processing of thyroid-stimulation hormone; clinical implications. Rec Prog Horm Res 41:577-606

144. Samuel A. McLean,1 David A. Williams,1 Richard E. Harris,1 Willem J. Kop,2 Kimberly H. Groner,1 Kirsten Ambrose,1 Angela K. Lyden,1 Richard H. Gracely,1Leslie J. Crofford,3 Michael E. Geisser,1 Ananda Sen,1 Pinaki Biswas,1 and Daniel J. Clauw1. Momentary Relationship Between Cortisol Secretion and Symptoms in Patients With Fibromyalgia. Arthritis & Rheumatisim Vol. 52, No. 11, November 2005, pp 3660–3669

145. Cottage, F. Correspondence. The Lancet 1999 (353) May 8;1619.

148. Riccardo Baschetti, M.D. Investigations of Hydrocortisone and Fludrocortisone in the Treatment of Chronic Fatigue Syndrome The Journal of Clinical Endocrinology & Metabolism Vol. 84, No. 6 2263-2264

150. Henryk Zulewski, Beat Müller, Pascale Exer, André R. Miserez and Jean-Jacques Staub Estimation of Tissue Hypothyroidism by a New Clinical Score: Evaluation of Patients with Various Grades of Hypothyroidism and Controls1 The Journal of Clinical Endocrinology & Metabolism Vol. 82, No. 3 771-776

152. Henryk Zulewski, Beat Müller, Pascale Exer, André R. Miserez and Jean-Jacques Staub Estimation of Tissue Hypothyroidism by a New Clinical Score: Evaluation of Patients with Various Grades of Hypothyroidism and Controls1 The Journal of Clinical Endocrinology & Metabolism Vol. 82, No. 3 771-776

155. Escobari-Morreale et al. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats, J Clin Invest, 1995

162. Werner & Ingbar’s The Thyroid: A Fundamental and Clinical Text. Eighth Ed. Braverman L, Utiger R. Lipincott Williams & Wilkins.

204. Brewer J. TREATMENT OF ACTIVE HHV-6 INFECTION WITH HHV-6 SPECIFIC TRANSFER FACTOR IN PATIENTS WITH CHRONIC FATIGUE SYNDROME American Association for AACFS Chronic Fatigue Syndrome. Spring 2004.

223. Oliver, T. H., et al., Influenzal pneumonia: the intravenous injection of hydrogen peroxide, Lancet 1:432-433 (1920)).

231. BILL NUMBER: AB 592 AMENDED BILL TEXT; AMENDED IN ASSEMBLY APRIL 4, 2005, INTRODUCED BY Assembly Member Yee FEBRUARY 17, 2005. An act to amend Section 2234.1 of the Business and Professions Code, relating to healing arts.

232. The Principals of Medical Ethics adopted by the American Medical Association in 1980

244. Finney JW et al. Protection of the Ischemic Heart with DMSO Alone or DMSO with Hydrogen Peroxide. Annals New York Academy of Sciences
245. Urshel HC et al. Cardiac Resucitation with hydrogen peroxide. Circulation
255. Robert E. Hirschtick, MD; Susan E. Dyrda, MD; and LoAnn C. Peterson, MD. Death from an Unconventional Therapy for AIDS. Annals of Internal Medicine. 15 April 1994;120:8:694
257. Physicians Desk Reference. Medical Economics Thomson Healthcare, 2005

290. Cho et al. A strong association between thyrotropin receptor-blocking antibody-positive atrophic autoimmune thyroiditis and HLA-DR8 and HLA-DQB1 0302 in Koreans. J. Endocrinology and Metabolism 2001; Vol/Issue: 77:3

292. Robin P. Peeters, Pieter J. Wouters, Hans van Toor, Ellen Kaptein, Theo J. Visser, and Greet Van den Berghe. Serum 3,3',5'-Triiodothyronine (rT3) and 3,5,3'-Triiodothyronine/rT3 Are Prognostic Markers in Critically Ill Patients and Are Associated with Postmortem Tissue Deiodinase Activities. The Journal of Clinical Endocrinology & Metabolism 90(8):4559–4565

298. Bo Wikland, P O Sandberg, Hans Wallinder Subchemical Hypothyroidism. THE LANCET • Vol 361 • April 12, 2003

299. Apurva K. Srivastava; Elizabeth L. Vliet; E. Michael Lewiecki; Michael Maricic; Alex Abdelmalek; Oscar Gluck; David J. Baylink. Clinical Use of Serum and Urine Bone Markers in the Management of Osteoporosis. Curr Med Res Opin. 2005;21(7):1015-1026

311. H. Harrison1,2, L. Berg2, and D. Berg2. Polygenic Contributions of Procoagulant Genetic Factors in Chronic Fatigue Syndrome and Related Chronic Illnesses. Genetics in Medicine, May, 2002

329. Martin WJ. Detection of RNA sequences in cultures of a stealth virus isolated from the cerebrospinal fluid of a health care worker with chronic fatigue syndrome. Pathobiology (in press)

342. Teitelbaum J. PreAmerican Association for CFS/FMS 7th International Conference. A clinically focused workshop on Effective CFS/Fibromyalgia Therapies. October 7, 2004 Madison, Wisconsin

343. Teitelbaum J. Effective Treatment of Chronic Fatigue Syndrome, Pain and Fibromyalgia - A Double-blind Study 12th Annual World Congress on Anti-Aging Medicine, Las Vegas, NV 2005

350. Crofford LJ, Clauw DJ. Fibromyalgia: where are we a decade after the American College of Rheumatology classification criteria were developed? [editorial]. Arthritis Rheum 2002;46:1136–8.

361. American Physiological Society annual meeting, 2003
http://www.webmd.com/content/Article/63/72082.htm

