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Physiology of the read–write genome

James A. Shapiro
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Abstract Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome
change is an active cell-mediated physiological process. This is distinctly at variance with the
pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that
DNA changes arise as the result of regulated cell biochemistry means that the genome is best
modelled as a read–write (RW) data storage system rather than a read-only memory (ROM).
The evidence behind this change in thinking and a consideration of some of its implications
are the subjects of this article. Specific points include the following: cells protect themselves
from accidental genome change with proofreading and DNA damage repair systems; localized
point mutations result from the action of specialized trans-lesion mutator DNA polymerases;
cells can join broken chromosomes and generate genome rearrangements by non-homologous
end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of
natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA
sequences in ways that generate many classes of genomic novelties; natural genetic engineering
functions are regulated and subject to activation by a range of challenging life history events;
cells can target the action of natural genetic engineering functions to particular genome locations
by a range of well-established molecular interactions, including protein binding with regulatory
factors and linkage to transcription; and genome changes in cancer can usefully be considered as
consequences of the loss of homeostatic control over natural genetic engineering functions.
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Introduction

A major accomplishment of cytogenetics and molecular
biology in the 20th century was the revelation that
genome repair and genome change are active cell processes.

James A. Shapiro, author of the 2011 book Evolution: A View from the 21st Century, is Professor of Microbiology at the University
of Chicago. He has a BA in English Literature from Harvard (1964) and a PhD in Genetics from Cambridge (1968). During a
postdoctoral at the Institut Pasteur in 1968, he established insertion mutations in bacteria. In 1969, he and colleagues at Harvard
Medical School used in vivo genetic manipulations to clone and purify the lac operon. With Bukhari and Adhya in 1976, he
organized the first conference on DNA insertion elements. In 1979, Shapiro formulated a molecular model for transposition.
In 1984, he showed that selection stress triggers transposon action. Since 1992, he has been writing about the importance of
biologically regulated natural genetic engineering.

This review is based on a presentation given at the IUPS Congress on 22 July 2013 in Birmingham, UK. A video with illustrative slides is available at
http://voicesfromoxford.com/video/how-life-changes-itself/412.

Cells write their own genome modifications (Shapiro,
2011, 2013). When pre-DNA neo-Darwinian assumptions
dictated that mutations had to be random and accidental,
it did not make sense to discuss the physiology of genetic
changes. But now that we know about the regulated
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molecular processes that proofread, repair and modify
genomic DNA, we can discuss the physiology of how cells
protect the genome and write new genomic structures
when appropriately stimulated.

The goals of this review will be (i) to acquaint physio-
logists with the wide array of regulated biochemical
systems we have come to recognize that underlie both
genome stability and genome change, and (ii) to relate
those systems to the processes of homeostatic regulation
(McClintock, 1984, 1987).

Replication proofreading and mismatch repair

Cells actively protect themselves from mistakes by the
replication apparatus. There are at least two levels for
which we know details of the error-avoidance systems.

Exonuclease proofreading. Cellular DNA replication
complexes contain exonuclease activities that come into
play when an incorrect base has been incorporated onto
the nascent DNA strand (Perrino & Loeb, 1989; Fazlieva
et al. 2009; Ibarra et al. 2009). The polymerase function of a
replication complex arrests when a mismatched duplex has
been formed so that the exonuclease activity can remove
the most recently incorporated nucleotides. Following
exonuclease excision, polymerization resumes to extend
the nascent strand without misincorporation. Studies with
Escherichia coli indicate that exonuclease proofreading
removes about 99.9% of the accidental misincorporations
from the nascent strand (Kunkel & Bebenek, 2000).

Post-replication mismatch repair. For those misincor-
porations that escape exonuclease proofreading, cells
have a backup mismatch repair system (Modrich &
Lahue, 1996; Hays et al. 2005; Jiricny, 2006; Modrich,
2006; Fukui, 2010). The mismatch repair system employs
duplex monitoring molecules named MutS (the E. coli
model) or a eukaryotic homologue, such as MutSH1–6
for humans. When MutS detects a mismatch, it recruits
MutL (E. coli) or one of its eukaryotic homologues plus
an endonuclease activity to cleave the newly replicated
strand on either side of the mismatch, a helicase to remove
the error-containing oiligonucleotide and a repair poly-
merase plus ligase to produce an error-free duplex. In
E. coli, discrimination of new and template strands occurs
by detecting DNA hemimethylations (Modrich & Lahue,
1996). It is not yet clear how the strands are discriminated
in eukaryotes. Mismatch repair in E. coli removes about
99% of the post-replication incorporation errors (Kunkel
& Bebenek, 2000).

In summary, exonuclease proofreading plus mismatch
repair can reduce error-driven mutations by five orders of
magnitude in E. coli (and presumably by a similar degree
in other organisms). These two physiological processes are

homeostatic and respond to molecular sensing of double
helix distortions.

DNA damage repair systems

Genomes are sensitive to damage by a number of physical
and chemical agents, including the reactive products of
oxidative metabolism in all aerobic organisms (Walker,
2000; Guetens et al. 2002). A variety of repair systems have
evolved to deal with these external sources of genome
change. The homeostatic nature of these systems was
recognized as early as the 1930s.

McClintock and X-ray-induced ‘mutations’. The first
demonstration of cell-mediated repair of induced
genome change arose out of McClintock’s cytogenetic
investigations of X-ray-induced maize mutants in the
1930s (McClintock, 1932). She studied the mutant
strains collected by Stadler at the University of Missouri.
Rather than the presumed ‘gene mutations’, she found
that the mutants carried chromosome rearrangements.
Some mutants had an unstable ‘variegating’ phenotype.
McClintock hypothesized that variegation resulted from
mitotic instability of ring chromosomes formed by
joining of X-ray-induced breaks near the telomeres of
a single chromosome. Although colleagues ridiculed
her hypothesis, she demonstrated the postulated ring
chromomes cytologically (McClintock, 1932) and went
on to demonstrate that two broken chromosome ends are
joined together with great efficiency in maize embryos
(McClintock, 1939, 1942).

It is worth quoting McClintock’s comments on these
experiments in her 1983 Nobel Prize lecture because she
emphasized homeostasis, cell monitoring of its genome
and informed physiological responses to unpredictable
genome damage events:

‘The conclusion seems inescapable that cells are able
to sense the presence in their nuclei of ruptured ends
of chromosomes and then to activate a mechanism
that will bring together and then unite these ends, one
with another . . . The ability of a cell to sense these
broken ends, to direct them toward each other, and
then to unite them so that the union of the two DNA
strands is correctly oriented, is a particularly revealing
example of the sensitivity of cells to all that is going on
within them . . . There must be numerous homeostatic
adjustments required of cells. The sensing devices and the
signals that initiate these adjustments are beyond our pre-
sent ability to fathom. A goal for the future would be to
determine the extent of knowledge the cell has of itself and
how it utilizes this knowledge in a “thoughtful” manner
when challenged’ (McClintock, 1984).

Damage-specific repair systems. Joining two duplexes
with double-strand (DS) breaks at their ends is today
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Table 1. Some repair processes for distinct kinds of DNA damage (from Shapiro, 2013, with references added)

DNA damage type or agent Error-free repair Error-prone/mutagenic repair References

Ionizing radiation,
double-strand (DS) breakage,
replication fork collapse

Homologous recombination
(Rec)

Non-homologous end-joining
(NHEJ)

(Cox, 2001; Lusetti & Cox, 2002;
Pastwa & Blasiak, 2003;
Frankenberg-Schwager et al.
2008; Fattah et al. 2010; Kass &
Jasin, 2010; Grabarz et al. 2012;
Kurosawa et al. 2013)

UV radiation (thymine dimers) Nucleotide excision repair
(NER)

Lesion bypass repair (Petit & Sancar, 1999; Tang et al.
1999; Sutton et al. 2000; Walker,
2000; Goodman, 2002;
Rechkunova & Lavrik, 2010)

Alkylation damage Base excision repair (BER),
NER, dealkylation

Lesion bypass repair (Fromme & Verdine, 2004;
Robertson et al. 2009; Kondo
et al. 2010; Jacobs & Schar, 2012)

Large chemical adducts
(e.g. benzpyrene damage)

Lesion bypass repair (DNA
PolIV and V in E. coli)

(Wagner et al. 1999; Napolitano
et al. 2000; Goodman, 2002)

Oxidative damage BER Lesion bypass repair (Lu et al. 2001; Fromme & Verdine,
2004; Yamada et al. 2006; Wirtz
et al. 2010; Jacobs & Schar, 2012)

Cytosine deamination to uracil BER (uracil-n-glycosylase) BER (uracil-n-glycosylase) (Jacobs & Schar, 2012; Perez-Duran
et al. 2012; Li et al. 2013)

Note that BER removal of uracil from DNA can have both mutation-prevention and mutation-promotion consequences (Perez-Duran
et al. 2012; Li et al. 2013). Resolving what conditions distinguish these two situations is an active topic of investigation.

called ‘non-homologous end joining’ (NHEJ), and cells
have various biochemical systems for carrying it out (van
Gent et al. 2001; Pitcher et al. 2005; Bowater & Doherty,
2006; van Gent & van der Burg, 2007; Bennardo et al. 2008;
Brissett & Doherty, 2009). NHEJ is but one of a series of
biochemical systems that have evolved to protect genomes
from many kinds of physical and chemical damage. The
partial list in Table 1 gives an idea of how extensive and
sophisticated the physiology of DNA damage repair has
evolved to be. We will return later to the significance of
error-free and error-prone repair modalities.

DNA damage checkpoints. Critical to the operation of
DNA repair systems is the ability cells have to delay
progress through the cell cycle until repair is complete.
The physiological process of monitoring each task in the
cell cycle and controlling the overall cycle so that it remains
synchronized is called a ‘checkpoint’ (Hartwell & Weinert,
1989; Elledge, 1996).

The first checkpoint to be explicitly recognized as such
was the inhibition of entry into the mitotic cell division
phase following DNA damage in budding yeast (Weinert
& Hartwell, 1988, 1989). If division occurs before repair is
complete, non-viable daughter cells form with incomplete
genomes. A similar cell division control had long been
known in the E. coli SOS response to ultraviolet (UV)
irradiation (Huisman et al. 1984; Schoemaker et al. 1984;
Freudl et al. 1987).

We know about checkpoint controls monitoring many
different aspects of the cell cycle, including genome
damage (Ishikawa et al. 2006), replication status (Weinert,
1992; Navas et al. 1995; Segurado & Tercero, 2009),
chromosome positioning and alignment on the spindle
pole (Hoyt, 2001; Taylor et al. 2004; Varetti & Musacchio,
2008; Nezi & Musacchio, 2009), and cell size (Rupes et al.
2001; Fang et al. 2006; Sabelli et al. 2013). The reason
checkpoints are so important is that they exemplify at
the molecular level the processes of self-evaluation and
self-control that McClintock emphasized in her Nobel
Prize lecture.

Apoptosis decisions in response to DNA damage.
An evaluation of both intracellular and extracellular
information occurs when cells have to decide between
undergoing either genome repair or programmed cell
death (apoptosis) in response to DNA damage (Zmasek
et al. 2007; Schlereth et al. 2010; Tentner et al. 2012). There
are apoptosis-promoting intercellular signals in both
prokaryotes (Engelberg-Kulka et al. 2006; Kolodkin-Gal
et al. 2007; Kolodkin-Gal & Engelberg-Kulka, 2008) and
eukaryotes (Yin, 2000; Krieghoff-Henning & Hofmann,
2008; Walsh & Edinger, 2010). In mammalian cell culture,
the presence of growth factors (such as insulin-like growth
factor, IGF) protects against apoptosis and leads to a DNA
repair response, while the presence of ‘death factors’ (such
as tumour necrosis factor, TNF) induces an apoptotic
response (Remacle-Bonnet et al. 2000; Danielsen &
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Maihle, 2002; Linseman et al. 2002; Janes et al. 2005;
Gomez-Vicente et al. 2006; Song, 2007; Holoch & Griffith,
2009; Joza et al. 2009). The ability of cells to sense their
biological environment and make life-or-death decisions
based on intercellular signals is a prototypical homeostatic
process (Loewer & Lahav, 2006). We will see other cell
signal responses when we discuss the control of molecular
systems to restructure the genome.

Mutator polymerases and point mutations

In the early 1950s, it became evident that UV-induced
mutagenesis in E. coli is an active cell process, part of what
we later came to call the ‘SOS’ DNA damage response
(Witkin, 1975, 1991; Little & Mount, 1982). Jean Weigle, a
Swiss physicist turned molecular biologist, performed the
clarifying experiments (Weigle, 1953; Weigle & Bertani,
1953). He used bacterial virus ‘lambda’ as his test
organism. The advantage of a virus was that the test DNA
could be treated independently of the cells in which it
replicated and mutated by irradiating cell-free suspensions
of lambda prior to infection.

Weigle systematically tested all combinations of
untreated and irradiated virus and host cells. He found
that irradiated cells had much greater capacity both to
repair lethal damage and also to induce mutations in the
irradiated lambda genomes. To universal surprise, he also
found augmented mutagenesis in untreated virus infecting
irradiated cells. In other words, UV irradiation induced
mutagenesis activity in the host cells, active even on
unirradiated DNA. This activity was dubbed ‘error-prone’
repair (Witkin, 1973).

Error-free and error-prone repair. The notion that certain
repair processes are precise and ‘error-free’ whereas others
are imprecise and ‘error-prone’ (Table 1) is based on
considering repair as the chief evolved functionality. The
distinction works readily for cases such as DS break repair.
For broken duplexes, repair by the multi-step process of
homologous recombination with an undamaged template
is intrinsically error-free (Kowalczykowski et al. 1994;
Kowalczykowski, 2000). NHEJ, by contrast, generally
creates new sequence structures and is therefore inherently
error-prone and mutagenic (Lieber, 2010; Symington &
Gautier, 2011).

In other cases, the distinction between error-prone and
dedicated mutator function is less clear. For example,
as indicated in Table 1, base excision repair removal of
uracil from DNA by uracil-n-glycosylase (Ung) activity
can lead either to accurate repair, as in E. coli, or to
mutagenic repair, as in activated B lymphocytes. In the
immune system, Ung activity is essential to somatic
hypermutation for antibody refinement (Perez-Duran
et al. 2012). Similarly, the UV-inducible E. coli SOS

functions DinB and UmuCD play key roles in mutagenesis,
but their absence has little effect on bacterial repair
capacity (Maenhaut-Michel, 1985; Brotcorne-Lannoye &
Maenhaut-Michel, 1986). Does this mean that some SOS
activities act more as mutator than repair functions
(Goodman, 1998; Garcia-Diaz et al. 2003; McKenzie et al.
2003; Galhardo et al. 2009)?

Trans-lesion bypass ‘mutator’ polymerases. An ambi-
guous answer to the question about UmuCD and DinB
mutator function comes from the discovery that they
represent a new class of DNA polymerase activity. DinB
encodes DNA polymerase IV, and UmuCD encodes DNA
polymerase V (Reuven et al. 1999; Wagner et al. 1999).

PolIV and PolV typify a class of non-processive poly-
merases that have the capacity to elongate nascent DNA
strands a few nucleotides opposite a damaged template
strand (‘trans-lesion bypass’ polymerization) (Goodman,
2002). As would be expected from the ability to over-
come template damage, trans-lesion bypass polymerases
are highly prone to mutagenic misincorporations. Thus,
they have also been called ‘mutator DNA polymerases’
(McKenzie & Rosenberg, 2001).

Detailed study of UV-induced mutagenesis in E. coli
revealed that particular trans-lesion polymerases (or pairs
thereof) are necessary for specific kinds of mutations
to occur, such as −1 or −2 frameshifts or particular
base substitutions (Napolitano et al. 2000; Fuchs et al.
2001). These unexpected results indicate that individual
localized point mutations are the result of action by
specific biochemical functions. Certainly, this conclusion
fits with the demonstrations that PolIV and PolV
account for the inducible mutagenic activity that Weigle
discovered on unirradiated lambda DNA (Caillet-Fauquet
& Maenhaut-Michel, 1988; Maenhaut-Michel &
Caillet-Fauquet, 1990; Maenhaut-Michel et al. 1992).
The involvement of identifiable enzymes with particular
DNA changes is far more in agreement with the physio-
logical view of mutation than with the random accident
assumption.

NHEJ, chromosome rearrangements and DS break
repair centres

As McClintock observed over the many years that she
studied the fate of broken chromosome ends, NHEJ is the
source of many kinds of chromosome rearrangements.
In the prior citation from her Nobel Prize lecture, she
pointed out that cells must have the ability to bring broken
chromosome ends together. Analysis of DS break repair in
budding yeast has thrown some light on this process (Lisby
et al. 2001, 2003a,b; Lisby & Rothstein, 2004, 2005).

When DS breaks occur in eukaryotic cells, specialized
chromatin, containing the exceptional histones H2A
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(yeast) or H2AX (mammals), forms at the broken ends.
By using immunofluorescence and fluorescent protein
tags to detect H2A, it is possible to see that broken
ends, homologous recombination proteins and NHEJ
proteins localize to subnuclear foci (‘repair centres’) in
a cell cycle-dependent manner (Lisby & Rothstein, 2004).
By differential labelling of nearby DNA, the presence of
broken ends from two different chromosomes can be
observed in a single repair centre (Lisby et al. 2003b),
where the ends can be joined by NHEJ to form a trans-
location or other rearrangement structure.

For recombination and NHEJ to take place, motor
proteins are required for two distinct tasks: (i) chromatin
remodelling of the damaged DNA (Giglia-Mari et al.
2011; Xu et al. 2012; Bennett et al. 2013; North et al.
2013; Seeber et al. 2013) and (ii) powering the DNA
movements needed for repair centre localization and
execution of strand exchanges (Mazin et al. 2010; Ceballos
& Heyer, 2011; Burgess et al. 2013). The nature of control
over chromosome movements towards the repair centres
remains unclear, but the physiological nature of DS
break repair is unmistakable insofar as its cell biology is
concerned.

Natural genetic engineering (NGE) functions

In addition to systems used both for DNA repair and for
genome change, there are a number of evolved complex
molecular systems that appear dedicated to generating
novel genome structures. Table 2 lists a number of
categories for these genome innovation systems.

From the list of diverse DNA transfer and
rearrangement systems in Table 2, it is evident that cells
have complex physiologies for assembling and modifying
their genomes. The range of molecular functionalities
enables living organisms to accomplish the following
adaptive genome writing tasks:

Import and integrate extensive DNA segments encoding
adaptive functions (horizontal transfer). The ability
of cells to acquire DNA by direct uptake from the
environment, virus infection, conjugal transfer, parasite
vectors (Houck et al. 1991) or other as yet unknown
means has made it possible for genomes to acquire
coding capacity for new biochemical activities. The
importance of horizontal DNA transfer in the spread
of antibiotic resistance and specialized adaptations in
bacteria and archaea is widely recognized (Grassi et al.
2012) (http://shapiro.bsd.uchicago.edu/ExtraRefs.Anti
bioticResistanceAndHorizontalTransfer.shtml). Less well
known are a rapidly growing number of examples where
eukaryotic microbes and multicellular eukaryotes have
acquired adaptive functions from prokaryotes or other
eukaryotes by horizontal DNA transfer (Kondrashov et al.

2006; Keeling & Palmer, 2008; Keeling, 2009; Whitaker
et al. 2009; Danchin et al. 2010; Oliver et al. 2010; Acuna
et al. 2012; Danchin & Rosso, 2012; Xi et al. 2012).

Diversify protein structures. DNA rearrangements serve
the antagonistic cells providing adaptive immunity
(http://shapiro.bsd.uchicago.edu/ExtraRefs.ImmuneSyst
emChanges.shtml) and their infectious microbial targets,
which undergo surface antigen variation to escape
immune system defences (Wisniewski-Dye & Vial,
2008; Deitsch et al. 2009; Cahoon & Seifert, 2011).
In addition, site-specific recombination ‘shufflons’
serve to expand pilus attachment specificity for
plasmid transfer (Gyohda et al. 2004), and ‘diversity-
generating retroelements’ extend bacteriophage host
range (Doulatov et al. 2004).

Alter the regulation of existing functions. Insertion of
a mobile genetic element in or near a particular genetic
locus is among the most common ways of altering
regulation of an existing genetic locus (Nakayashiki,
2011) (http://shapiro.bsd.uchicago.edu/Table4B(4).More
FormattingofInsertionTargetsbyMobileGeneticElements.
html). The regulatory changes include transcription
factor-, micro RNA- and RNA-directed epigenetic
controls. There are numerous examples of transcription
factor regulatory sites mobilized by transposons,
retrotransposons and retroviruses (http://shapiro.bsd.
uchicago.edu/Table5C-1.MobileElementsFoundtobeExap
tedascis-RegulatoryControlSitesinAnimals.html), and
epigenetic imprinting is often linked to the presence
of DNA from mobile elements (Youngson et al. 2005;
Kinoshita et al. 2007; Suzuki et al. 2007; Fujimoto et al.
2008; Gehring et al. 2009; Pask et al. 2009; Cowley et al.
2011).

In addition to mobile elements, integrated viruses
also change the regulatory configuration of the genome
(Kokosar & Kordis, 2013). Viruses provide sequences for
non-coding (ncRNAs) (Frias-Lasserre, 2012), sites for
transcriptional control (Peaston et al. 2004; Dunn et al.
2005; Maksakova et al. 2006; Conley et al. 2008; Jern &
Coffin, 2008; Cohen et al. 2009; Beyer et al. 2011) and
epigenetic regulation (Brunmeir et al. 2010; Macfarlan
et al. 2011; Conley & Jordan, 2012; Ward et al. 2013).

Shuffle exons to generate novel multi-domain protein
activities. It has become apparent from genome
sequencing that many new protein functionalities arise
from the accretion and rearrangement of functional
‘domains’ shared by many different proteins (Doolittle &
Bork, 1993; Doolittle, 1995; Lander et al. 2001; Toll-Riera
& Alba, 2013). There is direct evidence in several species
that mobile genetic elements have mediated exon shuffling
in the past and can do so experimentally in real time
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Table 2. Genome restructuring natural genetic engineering (NGE) systems

Function System References

Horizontal nucleic acid transfer
between cells

DNA import and export complexes (Zupan et al. 2000; Chen & Dubnau, 2004;
Cehovin et al. 2013)

Plasmids and other conjugative elements (Hayes, 1968; Sonea, 1987; Smillie et al. 2010;
Leclercq et al. 2012)

Viruses (Forterre, 2006; Comeau et al. 2008; Forterre,
2010; Krupovic et al. 2011)

Virus-like ‘gene transfer agents’ (GTAs) (Lang & Beatty, 2007; Stanton, 2007; Zhao et al.
2009; Leung et al. 2010)

Generate copies or variants of
genome coding sequences

Reverse transcription and genome insertion
of processed RNAs

(Brosius, 2003; Baertsch et al. 2008)

Mobilize DNA segments within
and between molecules

Site-specific recombination systems (Landy, 1989; Hall & Stokes, 1993; Grindley et al.
2006; Cambray et al. 2010; Hallet & Sherratt,
2010)

DNA transposons (Curcio & Derbyshire, 2003)
Retroviruses and retroviral-like LTR

retrotransposons
(McDonald et al. 1997; Rho et al. 2007;

Novikova, 2009)
Non-LTR retrotransposons (Schmidt, 1999; Han, 2010)
Inteins (Elleuche & Poggeler, 2010)
Retrosplicing introns (Lambowitz & Zimmerly, 2011)

Generate diversity in protein
structure or expression

Silent cassette conversion into expression sites (Plasterk et al. 1985; Barry & McCulloch, 2001;
Horn, 2004; Barbour et al. 2006; Cahoon &
Seifert, 2011)

Shufflons and invertons (Komano, 1999; Hallet & Sherratt, 2010)
Diversity-generating retroelements (Medhekar & Miller, 2007)
Variable lymphocyte receptor diversification (Rogozin et al. 2007; Boehm et al. 2012)
VDJ joining (Bassing et al. 2002; Alt et al. 2013)
Somatic hypermutation (Honjo et al. 2002; Longerich et al. 2006; Peled

et al. 2008)
Isotype class switching (Honjo et al. 2002; Longerich et al. 2006;

Bothmer et al. 2011; Bothmer et al. 2013)
Genome immunity acquisition Clustered regular interspersed palindromic

repeats (CRISPRs)
(Barrangou, 2013; Sorek et al. 2013)

piRNA loci (Brennecke et al. 2007; Handler et al. 2013)
Developmental chromatin

diminution
(Muller & Tobler, 2000; Bachmann-Waldmann

et al. 2004)
Ciliate macronucleus

development
Excision of germline-specific sequences,

unscrambling of jumbled coding sequences,
telomere capping of short multicopy
minichromosomes

(Juranek & Lipps, 2007; Nowacki et al. 2011)

Abbreviations: LTR, long terminal repeat; piRNA, piwi-binding RNA; VDJ, variable, diversity and join cassettes of immuno-
globulin-encoding DNA sequences.

(Moran et al. 1999; Hiller et al. 2000; Ejima & Yang, 2003;
Liu & Grigoriev, 2004; Morgante et al. 2005; Damert et al.
2009; Hancks et al. 2009; Elrouby & Bureau, 2010) (http://
shapiro.bsd.uchicago.edu/Table5A.ExamplesofDocumen
tedExonShufflingbyMobileGeneticElements.html).

Create new polynucleotide coding sequences. One of the
outstanding problems in protein evolution is the origin
of novel domain and whole protein coding sequences.
This problem has been partially solved by discovering
(i) that new exons frequently arise post-insertion by

utilization of splice signals inside mobile elements
(‘exonization’) (Sorek, 2007; Burns & Boeke, 2008;
Toll-Riera et al. 2009; Wissler et al. 2013) (http://
shapiro.bsd.uchicago.edu/Origin_of_New_Protein_Dom
ains.html) and (ii) that ‘neogene’ formation occurs by
insertion of reversed transcribed sequences into genetic
loci, often generating chimeric coding regions (Long,
2001; Betrán et al. 2002; Piriyapongsa et al. 2007; Chen
et al. 2010; Fu et al. 2010; Schmitz & Brosius, 2011;
Mandal et al. 2013) (http://shapiro.bsd.uchicago.edu/
Table5B.Reportsofretrogenesinplantandanimalgenomes.
html).

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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New coding sequences also arise by the reverse
transcription and insertion of ‘edited’ (sequence altered)
mRNAs or ncRNAs (Lev-Maor et al. 2007; Xie et al. 2012;
Mandal et al. 2013). In addition to mobile elements,
fragments of viral and organelle sequences have also
undergone exonization to generate novel proteins and
domains in nuclear genomes (Taylor & Bruenn, 2009;
Koonin, 2010; Liu et al. 2010, 2011a,b; Chiba et al.
2011; Lloyd & Timmis, 2011; Woehle et al. 2011;
Rousseau-Gueutin et al. 2012).

Enhance protein diversity by alternative transcription and
splicing signals. When a mobile element inserts into an
intron, it can generate transcript and protein diversity
by providing both alternative transcription initiation and
termination sites as well as alternative splice signals (Han
et al. 2004; Han & Boeke, 2005; Wheelan et al. 2005;
Zemojtel et al. 2007; Burns & Boeke, 2008; Gogvadze
& Buzdin, 2009; Kaer et al. 2011). These additional
regulatory sites lead to the production of messages
truncated either at the 5′ start or at the 3′ tail and encoding
proteins with altered combinations of exons.

Rapidly disperse common regulatory sequences to
distant genetic loci to generate coordinately controlled
genome networks. The ability of mobile elements to
move rapidly to many genome locations allows them to
solve the problem of generating functionally coordinated
networks without having to alter each locus independently
(Feschotte, 2008; Kunarso et al. 2010; Lynch et al. 2011)
(http://shapiro.bsd.uchicago.edu/Table5C-1.MobileEle
mentsFoundtobeExaptedascis-RegulatoryControlSitesin
Animals.html). Single events can activate mobile element
activity that results in multiple genome modifications.
This is of particular importance after interspecific
hybridization and whole genome duplication (WGD),
which create redundant copies of entire networks
(Teichmann & Babu, 2004). It is noteworthy that such
WGD events correspond to major transitions in the
evolutionary record, such as the emergence of vertebrates
(Kasahara, 2007).

Viruses as part of the distributed RW genome. Listing
viruses as agents of genome transfer may appear surprising
to many readers accustomed to think of these sub-
cellular infectious agents as parasites. But it is also
useful to consider viruses as both extracellular and intra-
cellular extensions of the collective read–write (RW)
genome of living cells. This view was implicit in the
work of Lwoff and his students Wollman and Jacob on
temperate bacteriophages, which could enter and exit
from the genomes of bacteria (Lwoff, 1954, 1957, 1966;
Jacob & Wollman, 1961; Wollman & Jacob, 1961). Sonea
and Panisset explicitly articulated the collective genome

concept for prokaryotes in the 1970s and 1980s (Sonea,
1971; Sonea & Panisset, 1983; Sonea & Mathieu, 2001).

Sonea and Panisset viewed the prokaryotic genome
as an ecology-wide distributed system containing DNA
sequences encoding all manner of adaptive functions.
When a particular ecological niche became available, the
requisite functions could be assembled in one cell by
horizontal DNA transfer, including viral infections, to
produce an organism that could exploit the new niche.
In accordance with this view, the results of environmental
metagenomics show that the virosphere provides a
significant reservoir of DNA encoding a wide range of
cellular functions (Williamson et al. 2008; Kristensen et al.
2010; Alperovitch-Lavy et al. 2011; Sharon et al. 2011;
Breitbart, 2012; Hurwitz et al. 2013; Roux et al. 2013;
Schoenfeld et al. 2013).

Moreover, sequencing the genomes of recently
discovered giant DNA viruses that infect amoebae, algae
and other protists has revealed a realm of genome mixing
between the three domains of life. The megabase-range
genomes of these viruses contain mixtures of viral,
archaeal, bacterial and eukaryotic sequences (Boyer et al.
2009; Wilson et al. 2009; Colson & Raoult, 2010; Fischer
et al. 2010; Yutin et al. 2013). Large DNA viruses have
extended host ranges, and the protists they infect harbour
bacterial symbionts that also infect plants and animals
(Huws et al. 2008; Bozzaro & Eichinger, 2011; Steinert,
2011; Yousuf et al. 2013). There is even evidence of conjugal
transfer within amoebae between animal and plant
pathogenic bacteria (Saisongkorh et al. 2010). Thus, there
exist multiple biological paths for distributing novelties
originating within the lower eukaryote-cum-large DNA
virus ‘melting pot’ for genome sequence innovation to all
kinds of cells (Boyer et al. 2009; Moliner et al. 2010).

Activation of NGE

One of the major features of cell-mediated genome change
is regulation over the biochemical activities involved. This
means physiologically that genome change functions are
facultative and responsive to external and internal stimuli
(http://shapiro.bsd.uchicago.edu/TableII.7.shtml). The
range of activating NGE stimuli extend from DNA
damage and other stress events (infection, hybridization,
starvation) to evolved responses to intercellular signals
(pheromones, lymphokines).

My personal experience with physiological activation
of NGE came from studying the action of a transposable
element in mediating the fusion of the araB and lacZ
coding sequences to direct synthesis of a hybrid protein
(Shapiro, 1984, 1997). Fusions were not detectable in
over 3 × 1010 plated bacteria following normal growth
(i.e. no colonies within the first 3–4 days), but after
several days of additional incubation colonies began
to sprout in ever greater numbers, and the frequency
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rapidly increased to at least one fusion per 105 viable
bacteria on the selection plates. Fusions were dependent
on transposase activity (Shapiro & Leach, 1990). The
key parameter inducing this particular DNA restructuring
process was aerobic starvation, independent of the initial
carbon source (Maenhaut-Michel & Shapiro, 1994), and a
number of regulatory proteases and transcription factors
were necessary for fusion activation (Shapiro, 1993;
Gomez-Gomez et al. 1997; Lamrani et al. 1999).

The araB–lacZ fusion system was the first example of a
more general phenomenon that has come to be called
‘adaptive mutation’ (Foster, 1993; Shapiro, 1997; Hall,
1998; Rosenberg, 2001) (http://shapiro.bsd.uchicago.edu/
TableII.7.shtml). Although the phenomenon and the
term ‘adaptive’ have proved controversial (Roth et al.
2006), I argue that the term is appropriate in two
senses: (i) increased mutability occurs as an adaptive
response to starvation conditions, and (ii) among the
resulting mutations, there are invariably some that provide
adaptation to the selective conditions.

The stresses or deviations from the normal genomic
state that trigger mutability in eukaryotes correlate with
stimuli that alter epigenetic formatting (http://shapiro.
bsd.uchicago.edu/TableII.10.shtml). It therefore appears
that a major mode of NGE activation is disruption
of epigenetic controls known to inhibit the activity of
mobile elements and possibly other DNA restructuring
functions (Hollister & Gaut, 2009; Handler et al. 2013;
Nuthikattu et al. 2013). In addition to destabilizing NGE
controls, perturbations of various outside inputs ranging
from nutrition to maternal care lead to trans-generational
epigenetic changes without altering the underlying
DNA sequences (http://shapiro.bsd.uchicago.edu/Trans
generational_Epigenetic_Effects.html). How and why
various stresses and stimuli affect epigenetic silencing is an
active topic of research concerning physiological impacts
on the genome.

As expected from physiological processes, there are
a number of diverse but specific effects of intercellular
signalling molecules on NGE activities. In bacteria,
pheromones and quorum sensing signals stimulate trans-
fer of conjugative elements and uptake of extracellular
DNA (Fuqua & Winans, 1994; Auchtung et al. 2005;
Meibom et al. 2005; Kozlowicz et al. 2006a,b; Dunny, 2007;
Christie-Oleza et al. 2009; Suckow et al. 2011; Lo Scrudato
& Blokesch, 2012; Cook & Federle, 2013). In budding
yeast, retrotransposition of the Ty3 and Ty5 elements
is coordinated with mating events by sex pheromone
induction (Kinsey & Sandmeyer, 1995; Ke et al. 1997).
In rodents, steroid hormones induce reproduction and
retrotransposition of mouse mammary tumour virus
(Truss et al. 1992). In the mouse and human immune
systems, lymphokine molecules determine the sites of DS
breaks and NHEJ for isotype switching (Kinoshita et al.
1998; Dunnick et al. 2011).

Cell- and tissue-type specific NGE processes as part of
the normal life cycle

The DNA changes associated with antigen receptor
synthesis in lymphocytes are the most thoroughly
documented case of a tissue-specific NGE process (http://
shapiro.bsd.uchicago.edu/ExtraRefs.ImmuneSystemChan
ges.shtml). But there are other cases, which show that
the immune system is far from exceptional. In Drosophila
and nematodes, for example, the actions of P factors and
other mobile genetic elements are specific to germ-line
tissues (Laski et al. 1986; Siebel & Rio, 1990; Moerman
et al. 1991; Takeda et al. 2007; Koga et al. 2008; Keng
et al. 2009). The same germ-line restriction is true of a
retrotransposon in mice (Dupressoir & Heidmann, 1996).

One of the more intriguing tissue-specific regulatory
phenomena is the activation of long interspersed element
(LINE) retrotransposition in mammalian neural cells
(Muotri et al. 2005, 2010; Coufal et al. 2009; Thomas et al.
2012). This observation has led to the hypothesis that
LINE-induced genome diversity is a contributing factor
to neural network architecture in the mammalian nervous
system (Muotri & Gage, 2006; Muotri et al. 2007). There is
also the potential for deleterious changes, and a recent
report links LINE retrotransposition to schizophrenia
(Bundo et al. 2014).

Targeting of NGE

The ability of cells to regulate NGE functions is not
limited to turning them on and off. Cells employ a
range of different molecular mechanisms to target NGE
activity both towards and away from particular regions
of the genome (http://shapiro.bsd.uchicago.edu/TableII.
11.shtml). The targeting mechanisms involve familiar
molecular interactions: protein–DNA sequence binding,
protein–protein binding, nucleic acid sequence homo-
logies and coupling to transcription. What has made
recognition of this widespread targeting capacity difficult
for many biologists to accept is simply the unsupported ad
hoc assertion that such targeting within the genome is not
possible. A very partial discussion of targeting examples
follows.

Homologous recombination. In principle, homologous
recombination can occur between any two DNA duplexes
that have the same sequence. But the real in vivo
recombination process inevitably displays non-uniformity
across the genome (‘hotspots’ and ‘coldspots’) (Smith,
1994; Huang & Keil, 1995; Amundsen & Smith, 2007;
Cromie et al. 2007; Grey et al. 2009; Brunschwig et al. 2012;
Steiner & Steiner, 2012; Martin-Castellanos et al. 2013).
The non-uniformity reflects the biochemical complexity
of the homologous exchange process (Kowalczykowski
et al. 1994; Kowalczykowski, 2000; San Filippo et al. 2008),
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which provides opportunities for regulation, as well as the
need for specific protein–DNA interactions to carry out
the actual physiological recombination steps (Krejci et al.
2012; Baudat et al. 2013).

An example of sequence specificity is provided by
the ‘chi’ sites regulating motor protein behaviour and
exonuclease specificity of proteins needed to process
broken duplex ends to initiate bacterial recombination
(Spies et al. 2003; Amundsen & Smith, 2007). This feature
of the prokaryotic recombination process has evolved
independently at least twice in prokaryotes given that
gram-negative and gram-positive bacteria have distinct
sets of chi sites and cognate exonuclease proteins (El
Karoui et al. 2000).

An example of targeting homologous exchange away
from particular regions of the genome comes from
studies of mice, where recombination events might disrupt
evolved combinations of transcriptional regulatory
signals (Brick et al. 2012). A particular protein has
evolved to recognize those combinations and suppress
recombination events (Segurel et al. 2011). This same
protein also protects the integrity of its own coding
sequences (Jeffreys et al. 2013). Chromatin formatting
plays an important role in regulating the distribution of
homologous recombination sites (Yamada et al. 2013),
and the same recombination suppressing protein also
influences this epigenetic regulation (Grey et al. 2011).

Targeting mobile element insertions towards adaptively
useful locations (and away from harmful regions).
Protein–DNA and protein–protein interactions frequently
target mobile element insertions to advantageous
positions. Here we will look at only two of many examples.

The bacterial transposon Tn7 encoding antibiotic
resistances provides a good prokaryotic example (Craig,
1991). When horizontal transfer introduces Tn7 into a new
cell, DNA recognition by the multi-protein integration
complex occurs at a specific chromosomal location where
insertion has no deleterious effect on bacterial physio-
logy. However, when a plasmid without Tn7 is leaving
a cell that carries a chromosomal copy of the element,
a different targeting protein becomes part of the trans-
position/integration complex. This particular protein
binds to a DNA replication factor and targets new
insertions in a sequence-independent manner to actively
replicating DNA (Peters & Craig, 2001; Parks et al. 2009).
As replication in the donor cell powers plasmid trans-
fer events, this protein–protein interaction targets Tn7
insertions to mobilizing plasmids and facilitates dispersal
of the transposon to new cells (Wolkow et al. 1996; Parks
& Peters, 2009).

In yeast cells, there are a number of retroviral-like
mobile elements that display distinctive insertion patterns
determined by protein–protein interactions that keep

them from disrupting expressed coding sequences but
allow them to alter coding sequence expression (Levin
& Moran, 2011):

(i) In budding yeast, retrotransposons Ty1 and Ty3 both
insert upstream of RNA PolIII transcription start
sites. However, the precise molecular mechanism
is specific to each element. For Ty1, the integrase
protein interacts with nucleosome histone markers
at the initiation site (Mou et al. 2006; Mularoni et al.
2012), while the Ty3 integrase interacts with two
PolIII transcription initiation factors (Kirchner et al.
1995).

(ii) The budding yeast retrotransposon Ty5 inserts pre-
ferentially into unexpressed chromatin regions by
binding of a phosphorylated domain of the integrase
to the Sir4 silencing factor (Xie et al. 2001; Brady
et al. 2008). However, under stress conditions,
the phosphate is lost from the integrase domain,
and insertion becomes untargeted, perhaps because
insertions into expressed regions of the genome may
prove useful (Dai et al. 2007).

(iii) In fission yeast, the Tf1 retrotransposon inserts
upstream of RNA PolII transcription start sites due to
interaction of the integrase protein with 5′-binding
transcriptional activators (Behrens et al. 2000; Leem
et al. 2008).

These distinct yeast retrotransposon targeting
mechanisms with remarkably similar specificities appear
to have evolved independently for adaptive utility.

Targeting isotype class switching by intercellular
signalling. One example of NGE targeting that deserves
emphasis is class switching in the DNA encoding immuno-
globulins. This process occurs in activated B cells once
VDJ joining and somatic hypermutation have generated
and refined the antigen binding capacity of an immuno-
globulin molecule (Bothmer et al. 2011).

Immunoglobulins originate as cell-bound IgM
molecules because the constant region of the heavy protein
chain is encoded by a μ exon (Fig. 1). Directing the anti-
gen specificity of the immunoglobulin towards different
locations in the body occurs by a change in the constant
region of the heavy chain (HC). This requires a ‘class
switch’ of the encoding HC exon from μ to one encoding
another Ig class or ‘isotype’ (Fig. 1).

The isotype switch occurs by inducing DS breaks
at special ‘switch’ regions (S) preceding each HC exon
at the immunoglobulin heavy chain (IgH) locus (black
diamonds in Fig. 1) (Bothmer et al. 2013). The DS break
requires transcription at Sμ (already transcribed) and a
second switch region. The downstream switch regions
each have a promoter responsive to a combination of
lymphokine signalling molecules. As only activated and
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transcribed switch regions undergo breaks followed by
end-joining, the cells of the immune system effectively
instruct the activated B cell which class/isotype antibody
to synthesize.

The connection of transcription and DNA rearrange-
ment is a powerful tool for directing NGE activities to any
functionally regulated region of the genome.

Genome homeostasis and cancer

One implication of the RW genome concept is that
cells have elaborate regulatory circuits controlling NGE
activities so the genome is not disrupted during normal
reproduction.

We observe homeostatic control of highly evolved NGE
systems where complex DNA rearrangement processes
occur only in certain tissues, such as vertebrate adaptive
immune systems, and where specific DNA changes occur
only at defined stages of the life cycle, such as bacterial
sporulation (Stragier et al. 1989; Kunkel et al. 1990),
cyanobacterial heterocyst differentiation (Carrasco &
Golden, 1995; Golden & Yoon, 1998), yeast mating-type
switches following spore germination (Haber, 2012) and
massive post-mating genome restructuring in ciliated
protozoa (Prescott, 2000) (http://shapiro.bsd.uchicago.
edu/Ciliate_macronuclear_development.html).

The RW genome perspective provides us with a new
way of thinking about the high levels of genome change
in cancer cells (Richards, 2001; Davies, 2013). Instead
of considering stochastic mutations as causes of cell

reprogramming in cancer, we can rather think of particular
NGE system activations as consequences of oncogenic
changes in cell regulatory networks.

Activation of specific NGE functions may help to
explain some of the recurrent DNA rearrangement
patterns observed in particular kinds of tumours,
exemplified by the Philadelphia chromosome in chronic
myelogenous leukaemia (CML) (Rowley, 1973, 2008). In
the case of lymphomas due to aberrations of immune
system rearrangements, the identity of the specific NGE
operator can be determined (Nambiar & Raghavan, 2011;
Rocha et al. 2012; Rocha & Skok, 2013).

It is notable that genome changes become more
extensive as cancer progresses (Jeggo, 2005; Alexandrov
et al. 2013). Tumours exemplify the extreme kinds
of genome changes cells can produce when normal
regulation of NGE radically fails. This failure can lead to
activation of genome change programmes that generate
novel cell proliferation phenotypes (Davies, 2013). The
phenomenon of ‘chromothripsis’ (literally, chromosome
shattering) is particularly interesting (Kloosterman et al.
2011; Chen et al. 2012; Korbel & Campbell, 2013). In
chromothripsis, individual chromosomes are fragmented
and rearranged, sometimes in a new structure or
sometimes with pieces transposed to other chromosomes.
Such extreme genome rearrangements resemble some
of the chromosome scrambling observed when related
genomes are compared, such as human and mouse (Water-
ston et al. 2002; Armengol et al. 2003). Perhaps the rapid
occurrence of similar scrambling in cancer has lessons for
evolutionary biology.

Figure 1. Mechanism of class switch recombination
that allows isotype switching in activated B cells
The boxes indicate exon cassettes and black diamonds
indicate switch regions. Copied from Wikipedia and used
according to Wikimedia Free Commons.
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Another lesson of chromothripsis is that NGE events
can often occur multiple times in spatially restricted
domains, such as a single chromosome. One aspect of
RW genome changes is that regulatory interactions can
intersect with NGE functions (Lin et al. 2009). This
possibility has been suggested for the chromosome looping
effect of androgen receptors on the location of recurrent
rearrangement breakpoints in prostate cancer (Wu et al.
2011; Barbieri et al. 2012; Martin et al. 2013). We have seen
transcription factor-mediated NGE targeting with yeast
retrotransposons, and cancer genomics may well provide
further examples.

A physiological view of the RW genome, its
maintenance and differentiation

The preceding sections have attempted to make two major
arguments: (i) the concept of an RW genome altered by
cell action is more compatible with the discoveries of
molecular genetics than the pre-DNA idea of a read-only
memory (ROM) subject to accidental change; (ii) the
concepts of physiological regulation can be applied to the
control of the NGE operators that alter DNA sequences
and genome structure in non-random and controlled
ways.

With respect to genome maintenance, the parallels
appear to be straightforward between homeo-
static regulation of organismal physiology and the
phenomenology of genome proofreading, DNA repair
and inhibition of NGE functions during normal
reproduction. However, the same parallel is applicable to
a ROM memory view of the genome.

Where the idea of an RW genome diverges from
conventional thinking in both genetics and physiology
is in the realm of genome differentiation. In this case,
regulation is for change rather than for stability. Genomes
can change to take on specialized tasks that occur
repeatedly in the life cycle or for adaptive innovation in
the face of evolutionary challenges.

We know that the genome changes as part of the normal
life cycle fit into organismal physiology in the same way
as cellular, tissue and morphological differentiation do
in multicellular development. Normal life-cycle genome
changes occur under well-defined conditions and have
characteristic features, even if the functional purpose is to
generate diversity, as in the adaptive immune system and
its antagonist, antigenic variation of infectious organisms
(http://shapiro.bsd.uchicago.edu/ExtraRefs.NaturalGene
ticEngineeringPartNormalLifeCycle.shtml). The existence
of highly evolved and tightly regulated NGE processes
that generate genome changes in a predictable fashion is
an empirical reality incompatible with the ROM genome
view.

The major challenge we face in understanding
non-random genome change is its success in generating

complex adaptive evolutionary innovations (Shapiro,
2011). It is not difficult to see how horizontal DNA
transfer, domain shuffling and mobile element dispersal
of regulatory signals expedite the search of functional
genome space and thereby facilitate the evolution of
novel biochemical activities and coordinately regulated
networks.

Nonetheless, constructing the genomic basis for a
major adaptive evolutionary innovation, such as a novel
form of mimicry or a four-chambered heart, comprises
coordinated changes in multiple developmental processes.
How could that be accomplished? We know from studies
of activation and targeting of NGE activities that genome
change operators and cell regulatory circuits interact in
multiple ways. A major 21st century research challenge for
the life sciences (including physiology, molecular genetics
and genomics) will be to explore the depth of control
circuit–NGE interactions and learn how ‘informed’ the
process of genome rewriting may be. I predict that big
surprises are in store for all of us.
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