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The essential hallmarks of cancer are intertwined with an altered cancer cell-intrinsic metabolism, either as
a consequence or as a cause. As an example, the resistance of cancer mitochondria against apoptosis-
associated permeabilization and the altered contribution of these organelles to metabolism are closely re-
lated. Similarly, the constitutive activation of signaling cascades that stimulate cell growth has a profound
impact on anabolic metabolism. Here, we review the peculiarities of tumor cell metabolism that might be
taken advantage of for cancer treatment. Specifically, we discuss the alterations in signal transduction path-
ways and/or enzymatic machineries that account for metabolic reprogramming of transformed cells.
Metabolic Reprogramming to the Advantage
of Cancer Cells
The first tumor-specific alteration, altered metabolism, was dis-

covered by the Nobel Prize winner Otto Warburg in the 1920s.

The ‘‘Warburg phenomenon’’ consists of an increase in glycoly-

sis that is maintained in conditions of high oxygen tension (‘‘aer-

obic glycolysis’’) and gives rise to enhanced lactate production

(Brahimi-Horn et al., 2007; Warburg et al., 1924). In addition, or

alternatively, cancer cells use elevated amounts of glucose as

a carbon source for anabolic reactions. Although the Warburg

phenomenon is not universally applicable to all cancers (Funes

et al., 2007), enhanced glucose uptake is sufficiently prevalent

that it is taken advantage of to image cancer in clinics using

the glucose analog 2-(18F)-fluoro-2-deoxy-D-glucose (FDG) by

positron emission tomography (PET). FDG-PET combined with

computer tomography (PET/CT) has a >90% sensitivity and

specificity for the detection of metastases of most epithelial

cancers (Mankoff et al., 2007).

There are several reasons why enhanced glucose uptake for

glycolytic ATP generation or anabolic reactions constitutes an

advantage for tumor growth (Figure 1):

First, in conditions of aerobic glycolysis, cells can live in con-

ditions of fluctuating oxygen tension (due to inconstant he-

modynamics of distant blood vessels) that would be lethal

for cells that rely on oxidative phosphorylation (OXPHOS) to

generate ATP (Pouyssegur et al., 2006).

Second, cancer cells generate bicarbonic and lactic acids,

lactate being the principal end product of aerobic glycolysis.

Such acids condition their environment (Koukourakis et al.,

2006), favor tumor invasion (Swietach et al., 2007), and

suppress anticancer immune effectors (Fischer et al., 2007).

Lactate that is produced by tumor cells can be taken up by

stromal cells (via the monocarboxylate transporters MCT1

and MCT2) to regenerate pyruvate that either can be ex-

truded to refuel the cancer cell or can be used for OXPHOS

(Koukourakis et al., 2006). This arrangement generates a

microecosystem in which anaerobic components (cancer
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cells) and aerobic components (nontransformed stromal

cells) engage in complementary metabolic pathways, thus

buffering and recycling products of anaerobic metabolism

to sustain cancer cell survival and growth.

Third, tumors can metabolize glucose through the pentose

phosphate pathway (PPP) to generate nicotinamide adenine

dinucleotide phosphate (NADPH) that ensures the cell’s anti-

oxidant defenses against a hostile microenvironment and

chemotherapeutic agents (Gatenby and Gillies, 2004). More-

over, NADPH can contribute to fatty acid synthesis. The non-

oxidative part of the PPP (in which ribose 5-phosphate, an in-

termediate of the PPP, is fueled into glycolysis) is controlled

by transketolase reactions, and the transketolase-1 isoform

(TKL1) is overexpressed in multiple cancers (Foldi et al.,

2007; Langbein et al., 2006).

Fourth, and most importantly, cancer cells use intermediates

of the glycolytic pathway for anabolic reactions (for instance,

glucose 6-phosphate for glycogen and ribose 5-phosphate

synthesis, dihydroxyacetone phosphate for triacylglyceride

and phospholipid synthesis, and pyruvate for alanine and ma-

late synthesis) (Gatenby and Gillies, 2004). The embryonic

isoform of pyruvate kinase (PK), which dephosphorylates

phosphoenolpyruvate (PEP) to pyruvate, is highly expressed

in tumors yet is absent from adult tissues except adipocytes

(Christofk et al., 2008a). Interestingly, this isoform, PKM2, os-

cillates from high (tetrameric) to low (dimeric) activity (Chris-

tofk et al., 2008a; Mazurek et al., 2005). The low-active

dimeric form of PKM2 provides the metabolic advantage

that the phosphometabolites upstream of pyruvate accumu-

late and are then available as precursors for the synthesis of

amino acids, nucleic acids, and lipids (Mazurek et al., 2005)

while lactate production is avoided. This principle of ‘‘deviat-

ing’’ (at least part of the) intermediates from the glycolytic

pathways toward anabolic reactions also applies to the me-

tabolism of glycolytically derived pyruvate. In proliferating

cancer cells, pyruvate may enter a truncated tricarboxylic

acid (TCA) cycle. The net result of this truncated TCA cycle

is that acetyl-CoA is exported from the mitochondrial matrix
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Figure 1. Metabolic Reprogramming in Cancer Cells
In normal cells, aerobic glycolysis implies the conversion of glucose via pyruvate into acetyl-CoA and its complete oxidation (through the mitochondrion-localized
tricarboxylic acid [TCA] cycle and oxidative phosphorylation) to CO2 and H2O (which generates 38 ATP molecules per molecule of glucose). In contrast, in tumor
cells, glycolysis tends to be aborted at either of two steps. First, aerobic glycolysis in tumor cells implies conversion of glucose into pyruvate (which generates only
two ATP molecules per molecule of glucose) and subsequently into the waste product lactic acid. Second, in tumor cells, acetyl-CoA tends to be introduced into
a truncated TCA cycle, with the net result that acetyl-CoA is exported into the cytosol and serves as a building block for cell growth and proliferation. In this trun-
cated TCA cycle, citrate is preferentially exported to the cytosol via the tricarboxylate transporter. Once in the cytosol, citrate is cleaved by ATP citrate lyase (ACL)
to generate oxaloacetate and acetyl-CoA. Oxaloacetate is reduced to malate, then reimported into mitochondria and reconverted to oxaloacetate in the matrix
(while generating NADH that represses the TCA cycle), and it reacts with acetyl-CoA to complete the substrate cycle. Small arrows pointing up or down indicate
cancer-associated upregulation/activation or downregulation/inhibition of enzymes, respectively. Alterations indicated in red can be caused by the activation of
HIF-1. CA9 and CA12, carbonic anhydrases 9 and 12; CPT, carnitine palmitoyltransferase; GLUT, glucose transporter; GSH, glutathione; HIF, hypoxia-inducible
factor; IDO, indoleamine 2,3-dioxygenase; HK, hexokinase; OXPHOS, oxidative phosphorylation; LAT1, L-type amino acid transporter 1; LDHA, lactate dehy-
drogenase isoform A; MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PFK, phosphofructokinase;
PI3K, phosphatidylinositol 3-kinase; PGM, phosphoglycerate mutase; PKM2, pyruvate kinase isoform M2; PPP, pentose phosphate pathway; SCO2, synthesis
of cytochrome c oxidase 2; TLK, transketolase; VDAC, voltage-dependent anion channel.
(Figure 1) and becomes available for the synthesis of fatty

acids, cholesterol, and isoprenoids. Indeed, fatty acid syn-

thase (FASN), which synthesizes long-chain fatty acids from

acetyl-CoA, malonyl-CoA, and NADPH, is upregulated or ac-

tivated in many cancers (Wang et al., 2005). Similarly, choline

kinase (ChoK), which forms phosphorylcholine, is often over-

expressed in cancer (Glunde and Bhujwalla, 2007).

Thus, the entire metabolism (in particular glycolysis and the

TCA cycle) is reorganized to augment anabolic reactions linked

to cell growth and proliferation. However, it would be difficult

to reconcile enhanced lactate production (which would result

in a net loss of carbon that could have been used for anabolic re-

actions) with reduced PK activity (which rather would reduce py-

ruvate and hence lactate production) and a truncated TCA cycle

(which would consume pyruvate) unless the net consumption of

glucose was much higher in cancer cells than in their normal

counterparts.
Mechanisms of Metabolic Reprogramming
The molecular mechanisms that underlie metabolic reprogram-

ming of cancer cells are complex (Figure 2). Primary defects in

OXPHOS have been invoked to explain the Warburg phenome-

non because tumor mitochondria are often relatively small,

lack cristae, and are deficient in the b-F1 subunit of the ATP(syn-

th)ase (Lopez-Rios et al., 2007). Mitochondrial DNA (mtDNA) mu-

tations may arise as a result of tumor progression (Brandon et al.,

2006), but some mtDNA mutations might actively contribute

to tumor progression. Thus, expression of a mutant mtDNA-

encoded NADH dehydrogenase subunit 2 (associated with

head and neck squamous carcinoma) as a nuclear, mitochon-

drion-targeted gene product concomitantly stimulates aerobic

glycolysis, reactive oxygen species (ROS) production, and tumor

growth (Zhou et al., 2007).

One of the principal mechanisms of aerobic glycolysis resides

in the activation of hypoxia-inducible factor (HIF), a transcription

factor that is activated by hypoxic stress but also by oncogenic,
Cancer Cell 13, June 2008 ª2008 Elsevier Inc. 473
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Figure 2. Molecular Mechanisms of
Cancer-Specific Metabolic Reprogramming
As a result of oncogenic gain-of-function events
(pink) or the loss of tumor suppressors (green) affect-
ing the PI3K/Akt/mTOR/HIF axis and/or inactivation
of the p53 system, a stereotyped pattern of meta-
bolic changes is induced, leading to cancer-associ-
atedalterations inmetabolism.Note thatarrowscon-
necting different proteins do not necessarily indicate
direct interactions. ACL, ATP citrate lyase; AMPK,
AMP-activated kinase; CA9 and CA12, carbonic an-
hydrases 9 and 12; ChoK, choline kinase; CPT, car-
nitine palmitoyltransferase; FH, fumarate hydratase;
GLUT, glucose transporter; HIF, hypoxia-inducible
factor; HK, hexokinase; OXPHOS, oxidative phos-
phorylation; LAT1, L-type amino acid transporter 1;
LDHA, lactate dehydrogenase isoform A; MCT,
monocarboxylate transporter; mTOR, mammalian
target of rapamycin; NF, neurofibromin; PDK, pyru-
vate dehydrogenase kinase; PFK, phosphofructoki-
nase; PI3K, phosphatidylinositol 3-kinase; PIP3,
phosphatidylinositol triphosphate; PGM, phospho-
glycerate mutase; PHD, prolyl hydroxylase; PKM2,
pyruvate kinase isoform M2; SCO2, synthesis of
cytochrome c oxidase 2; SDH, succinate dehydro-
genase; TSC, tuberous sclerosis complex; VDAC,
voltage-dependent anion channel; VHL, von Hippel-
Lindau ubiquitin ligase.
inflammatory, metabolic, and oxidative stress (Harris, 2002;

Semenza, 2007; Taylor and Pouyssegur, 2007). HIF-1 is a heter-

odimer composed of constitutive, stable b subunits and unstable

a subunits, which are synthesized yet degraded under normoxic

conditions due to the sequential action of oxygen-dependent

prolyl hydroxylases (PHDs) and the VHL ubiquitin ligase. HIF-1

stimulates the conversion of glucose to pyruvate and lactate

by upregulating glucose transporter (GLUT) isoform 1 (GLUT1),

hexokinase (HK1 and HK2, which catalyze the initial step of

glycolysis), and lactate dehydrogenase A (LDHA), as well as the

lactate-extruding enzyme monocarboxylate transporter 4

(MCT4) (Pouyssegur et al., 2006; Semenza, 2007).

In addition, HIF-1 decreases the conversion of pyruvate to

acetyl-CoA by pyruvate dehydrogenase (PDH). For this, HIF-1

transactivates the gene encoding PDH kinase 1 (PDK1), which

inhibits PDH (Kim et al., 2006; Papandreou et al., 2006). Ace-

tyl-CoA is normally fed to the TCA cycle, producing the electron

donors NADH and FADH2, which donate electrons to the respi-

ratory chain complexes I and II, respectively. Hence, by inhibiting

PDH, HIF-1 compromises OXPHOS. In addition, HIF-1 facilitates

the adaptation of mitochondria to hypoxia by transactivating the

cytochrome c oxidase (COX) subunit COX4-2 and LON, a prote-

ase that degrades COX4-1 (Fukuda et al., 2007). HIF-1 counter-

acts the stimulatory action of Myc on mitochondrial biogenesis,

thereby reducing mitochondrial mass (Zhang et al., 2007). In

contrast, HIF-1 cooperates with c-Myc to promote aerobic

glycolysis by induction of HK2 and PDK1 (Dang et al., 2008).

Besides by a decrease in O2 tension, HIF-1 can be induced as

a result of tumorigenic germline mutations of two enzymes of the

TCA cycle: the mitochondrial matrix protein fumarate hydratase

(FH) and the inner mitochondrial membrane protein succinate

dehydrogenase (SDH). SDH is also a functional member of

complex II of the respiratory chain. Loss-of-function mutations

of FH or of SDH subunits (SDHB, SDHC, and SDHD) induce

the accumulation of the TCA cycle intermediates fumarate or
474 Cancer Cell 13, June 2008 ª2008 Elsevier Inc.
succinate, which competitively inhibit the a-ketoglutarate-

dependent HIF-1a prolyl hydroxylase, the enzyme that usually

targets HIF-1a for destruction in an oxygen-dependent fashion

(Gottlieb and Tomlinson, 2005). These examples illustrate that in-

duction of HIF-1 may contribute to the metabolic and oncogenic

changes induced by primary mitochondrial dysfunctions.

Beyond the central role of HIF-1 activation, oncogenes and tu-

mor suppressor genes determine metabolic reprogramming of

cancer cells at several levels (Table 1), establishing multiple links

between tumor cell biology and tumor biochemistry. Perhaps the

most significant example of a switch from respiration to aerobic

glycolysis is provided by the inactivation of the tumor suppressor

p53, as discussed in the next section.

Hallmarks of Cancer Linked to Metabolic Change
Cancer cells differ from healthy cells due to a plethora of molec-

ular changes (Hanahan and Weinberg, 2000; Zitvogel et al.,

2006), many of which may be mechanistically linked to metabolic

reprogramming (Figure 3).

Self-Sufficiency in Growth Signals

Growth factors usually activate receptor tyrosine kinases

(RTKs), which then stimulate two key signal-transducing kinase

pathways: the Ras/Raf/MAP kinase (ERK) pathway and the

phosphatidylinositol 3-kinase (PI3K) pathway. ERK and PI3K

converge to activate mTOR for stimulating cell growth. Most

cancers harbor activating mutations of the master regulators

(K-Ras, H-Ras, N-Ras, B-Raf, the p110a PI3K subunit, and

RTKs) or their downstream effectors (such as the kinases Akt

and PDK1), or inactivating mutations in negative regulators of

these proteins (Shaw and Cantley, 2006) (Table 1). There are

multiple mechanisms through which the constitutive activation

of growth factor signals can cause cancer-associated metabolic

reprogramming.

The activation of tyrosine kinases including RTK and Scr family

kinases results in the phosphorylation of enzymes on tyrosine
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Table 1. Metabolic Effects of Selected Oncogenes and Tumor Suppressor Genes

Gene Effects Disease Reference

Oncogenes

PI3K Activates Akt via PIP3; reduces

(via Akt) expression of the

b-oxidation enzyme carnitine

palmitoyltransferase 1A (CPT1A)

Ovarian and gastrointestinal

cancer

Deberardinis et al. (2006)

Akt Upregulates fatty acid synthase

(FASN); activates mTOR

complex 1

Breast and ovarian cancer Wang et al. (2005)

Her2 Increases, through activation

of PI3K, Akt, and mTOR,

expression of FASN and acetyl-

CoA carboxylase a (ACCa) at the

translational level

Mammary carcinoma Yoon et al. (2007)

Tyrosine kinases Generate phosphotyrosines that

can bind to pyruvate kinase

isoform PKM2, converting it from

a tetramer to a less active dimer

Multiple cancers Christofk et al. (2008b)

E7 from HPV16 Binds PKM2, converting it from

a tetramer to a less active dimer

Cervical carcinoma Mazurek et al. (2005)

Tumor Suppressors

p53 Required for expression of

SCO2 and hence optimal

OXPHOS; enhances the

expression of TIGAR,

a glycolysis inhibitor; reduces

the expression of the glycolytic

enzyme phosphoglyceromutase

Multiple cancers Matoba et al. (2006);

Bensaad et al. (2006);

Kondoh et al. (2005)

VHL Ubiquitin ligase required for

degradation of HIF-1a

Clear cell renal carcinoma Shaw and Cantley (2006)

TSC1 (hamartin) and

TSC2 (tuberin)

Negative regulators of Rheb

(which inhibits mTOR)

Tuberous sclerosis complex and

lymphangioleiomyomatosis

Shaw and Cantley (2006)

PTEN Negative regulator of class I PI3K Cowden syndrome and prostate

cancer

Shaw and Cantley (2006)

LKB1 Required for activation of AMPK Peutz-Jeghers syndrome and

sporadic lung adenocarcinoma

Shaw and Cantley (2006)

NF1 Negative regulator of RAS and

PI3K-Akt pathway

Neurofibromatosis Shaw and Cantley (2006)

PML Negative regulator of mTOR

complex 1

Promyelocytic leukemia and

lung cancer

Shaw and Cantley (2006)

Succinate dehydrogenase

subunits SDHB, C, and D

Accumulated succinate

competitively inhibits HIF-1a

prolyl hydroxylases (PHDs)

Paraganglioma (SDHB, C, and

D) and pheochromocytoma

(SDHB and D)

Gottlieb and Tomlinson (2005)

Fumarate hydratase (fumarase) Accumulated fumarate inhibits

PHDs

Leiomyomatosis and papillary

renal carcinoma

Gottlieb and Tomlinson (2005)
residues. This indirectly modulates the activity of the cancer-

specific isoform of pyruvate kinase, PKM2, which can bind to

phosphotyrosine-containing peptides (Christofk et al., 2008b).

Upon interaction between PKM2 and such phosphotyrosine-

containing peptides, PKM2 releases its allosteric activator,

FBP. This results in the inhibition of PKM2 activity as PKM2 tran-

sits from its active tetrameric state to its inactive dimeric state

(Christofk et al., 2008b). This mechanism may contribute to the

stimulation of anabolic reaction by oncogenic tyrosine kinases.

The partial inhibition of PKM2 (which catalyzes the last step of

glycolysis, upstream of pyruvate) allows the intermediates of
glycolysis to ‘‘deviate’’ toward anabolic reactions and simulta-

neously avoids excessive pyruvate production. However,

PKM2 inhibition alone is not sufficient to account for the can-

cer-specific reprogramming, which relies on additional features

including a general increase in glycolytic flux.

Cell-autonomous overactivation of the PI3K/Akt system,

downstream of RTKs, mediates an increase in glucose and

amino acid flux through the plasma membrane that may be at-

tributable in part to the activation of HIF-1a (Pouyssegur et al.,

2006). Akt stimulates the expression of one glucose transporter

(GLUT1) and induces the translocation of another (GLUT4) to the
Cancer Cell 13, June 2008 ª2008 Elsevier Inc. 475
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Figure 3. The Seven Hallmarks of Cancer and Their Links to Tumor Metabolism
The hypothetical links between different metabolic alterations and the seven nonmetabolic characteristics of neoplasia (circle) are depicted. Centripetal arrows
(pointing from the inside outwards) indicate how the seven hallmarks of cancer can impinge on metabolism. Centrifugal arrows (pointing from the outside inwards)
illustrate how neoplasia-associated metabolic reprogramming can contribute to the acquisition of the seven hallmarks. Ang-2, angiopoietin-2; GLUT, glucose
transporter; HIF, hypoxia-inducible factor; HK, hexokinase; OXPHOS, oxidative phosphorylation; PGM, phosphoglycerate mutase; PI3K, phosphatidylinositol
3-kinase; SCO2, synthesis of cytochrome c oxidase 2; VDAC, voltage-dependent anion channel; VEGF, vascular endothelial growth factor.
plasma membrane. Akt stimulates glycolysis through the activat-

ing phosphorylation of 6-phosphofructo-2-kinase (PFK2) and

fatty acid synthesis through the phosphorylation of ATP citrate

lyase (Manning and Cantley, 2007). Through mechanisms that

are not fully elucidated, Akt stimulates the association of HK1

and HK2 with mitochondria (Pastorino et al., 2005), thus linking

residual ATP synthesis by mitochondria to the catalysis of the

first, rate-limiting step of glycolysis. In addition, PI3K causes

the transcriptional downregulation of carnitine palmitoyltransfer-

ase 1A (CPT1A) (Deberardinis et al., 2006), an enzyme located in

the outer mitochondrial membrane that esterifies long-chain

fatty acids to carnitine, thereby initiating the mitochondrial im-

port of fatty acids and channeling them to b-oxidation. One of

the net effects of PI3K activation is hence an inhibition of b-oxi-

dation, which may contribute to the ‘‘glucose addiction’’ of can-

cer cells (Deberardinis et al., 2006). PI3K activation also induces

FASN, and the activating phosphorylation of Akt and FASN

correlates in tissue microarrays (e.g., in ovarian cancer) (Wang

et al., 2005).

mTOR, a serine/threonine kinase, is activated downstream of

the constitutively activated PI3K/Akt system. mTOR enhances

cap-dependent protein translation and cell growth while inhibit-

ing catabolic reactions mediated by autophagy. Several clinical

trials are currently examining the therapeutic efficacy of mTOR

inhibitors (Faivre et al., 2006). Increased activation of the PI3K/

Akt/mTOR pathway leads to phosphorylation of 4E-BP1, an

inhibitor of the eukaryotic translation initiation factor eIF4E,
476 Cancer Cell 13, June 2008 ª2008 Elsevier Inc.
resulting in increased eIF4E activity and cap-dependent transla-

tion in cancers. eIF4E overexpression can be tumorigenic, and

its inhibition can suppress the growth of xenografted human

cancers (Graff et al., 2007). Conversely, mTOR is inhibited by

hypoxia, and breast cancers often overexpress 4E-BP1 and

eIF4G to increase the cap-independent translation of proangio-

genic, hypoxia, and survival mRNAs (Braunstein et al., 2007).

Hence, the contribution of cap-dependent versus cap-indepen-

dent translation to cancer growth remains to be investigated in

further detail.

Evading Apoptosis

Defective apoptosis not only is crucial for initial oncogenesis

but contributes to chemotherapy resistance. Cancer cells often

manifest resistance against mitochondrial membrane permeabi-

lization (MMP), which is one of the decisive steps of apoptosis

(Kroemer et al., 2007). One link between apoptosis inhibition

and metabolic reprogramming may be provided by the associa-

tion of HK with the voltage-dependent anion channel (VDAC). HK

has been shown to associate more tightly with the outer mito-

chondrial protein VDAC in tumor cells than in normal control cells

(Pedersen, 2007). This increased HK-VDAC interaction may be

due to the constitutive activation of Akt. Akt induces the translo-

cation of HK to the outer mitochondrial membrane where it binds

to VDAC, presumably because Akt interferes with the glycogen

synthase kinase 3 (GSK3)-mediated phosphorylation of VDAC

(Pastorino et al., 2005) or because Akt phosphorylates HK

(Miyamoto et al., 2008). When associated with VDAC, HK may
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efficiently couple residual OXPHOS to the initial, rate-limiting

step of glycolysis. In addition, HK can inhibit MMP, presumably

through an effect on the permeability transition pore complex

(PTPC) (which also involves VDAC). Accordingly, peptides that

competitively disrupt the VDAC-HK interaction can induce

MMP and subsequent apoptosis (Robey and Hay, 2006). On the-

oretical grounds, such VDAC-HK-dissociating agents would

have a dual effect and hence revert the hyperglycolytic state

while facilitating apoptosis induction.

Complete or partial OXPHOS defects may also induce apo-

ptosis resistance. Total inhibition of the respiratory chain can

suppress the activation of the proapoptotic Bcl-2 proteins Bax

and Bak, either of which serves as a near obligate mediator of

MMP (Tomiyama et al., 2006). Thus, severe OXPHOS defects,

as are found in some cancers, might be automatically coupled

to a blockade of MMP and hence an inhibition of apoptosis.

OXPHOS defects also reduce the capacity of certain xenobiotics

to elicit ROS generation in mitochondria, thereby abrogating

their proapoptotic activity. This latter mechanism may explain

the fact that r� cells (cells that lack mitochondrial DNA and hence

OXPHOS) are resistant against a series of compounds that in-

duce apoptosis by provoking futile redox cycles in mitochondria

(Galluzzi et al., 2006; Kroemer et al., 2007). Thus, a state of de-

ficient OXPHOS might automatically compromise the intrinsic

pathway of apoptosis through a variety of distinct mechanisms.

Other links between mitochondrial alterations in cancer and

disabled apoptosis are more indirect. A hyperpolarization of

the inner mitochondrial transmembrane potential, as is fre-

quently seen in cancer cells (perhaps secondary to defects in

the F1F0 ATPase) (Galluzzi et al., 2006), can reduce the propen-

sity of PTPC opening (Zoratti and Szabo, 1995). There is also

a correlation between mitochondrial hyperpolarization and a rel-

ative deficiency in voltage-gated plasma membrane K+ channels

(Kv), enhancing cytosolic K+ to a level that exerts a tonic inhibi-

tory effect on caspases and apoptosis-inducing factor (AIF)

(Bonnet et al., 2007). Pharmacological inhibition of PDK1, which

is often overactivated in cancer, leads to reactivation of PDH and

reportedly corrects both the activity of Kv channels and mito-

chondrial hyperpolarization, thereby inducing cancer cell apo-

ptosis (Bonnet et al., 2007). Thus, PDK1 inhibitors may constitute

yet another example of dual-hit agents that simultaneously

reverse apoptosis resistance and metabolic reprogramming.

Limitless Replicative Potential

To ensure replicative potential, tumor cells often mutate or lose

senescence-inducing proteins such as p53. Loss of p53 is also

driven by Darwinian selection in a hypoxic environment, because

hypoxia-mediated activation of p53 can trigger cell death (Culm-

see and Mattson, 2005). As briefly stated above, inactivation of

p53 can directly cause the Warburg phenomenon through sev-

eral mechanisms. Thus, p53 positively regulates the expression

of the protein synthesis of cytochrome c oxidase 2 (SCO2),

which is required for assembling COX (Matoba et al., 2006).

p53 negatively regulates phosphoglycerate mutase (PGM), the

enzyme that converts 3-phosphoglycerate (3PG) to 2-phospho-

glycerate (2PG) in glycolysis (Kondoh et al., 2005). Moreover,

p53 transcriptionally activates TIGAR (TP53-induced glycolysis

and apoptosis regulator), an isoform of PFK2 that inhibits overall

phosphofructokinase activity, lowers the levels of FBP, and

hence inhibits glycolysis (because FBP is an allosteric activator
of the glycolytic enzyme 6-phosphofructo-1-kinase) while chan-

neling glucose to the PPP (Bensaad et al., 2006). At present,

there have been no systematic studies to determine through

which dominant (SCO2-, PGM-, or TIGAR-dependent?) pathway

inactivation of p53 impacts on cancer cell metabolism. Given the

major contribution of p53 to cancer cell biology, this issue

urgently awaits clarification.

Sustained Angiogenesis

Many tumors show increased expression of vascular endothelial

growth factor (VEGF) as a result of activated signaling pathways

(ERK, PI3K), an action that is amplified by hypoxia. Indeed, re-

cent work indicates that the expression of VEGF is cooperatively

induced by HIF-1 and c-Myc (Kim et al., 2007a). Another intrigu-

ing link between abnormal metabolism and cancer-mediated an-

giogenesis is provided by F1F0 ATPase. Both endothelial cells

and tumor cells express the F1F0 ATPase (normally an inner mi-

tochondrial membrane protein complex) at the cell surface,

where it may extrude protons from the cytosol to the extracellular

milieu and hence contribute to the net export of protons that is

required to maintain aerobic glycolysis. An endogenous angio-

genesis inhibitor, angiostatin, binds and inhibits surface F1F0

ATPase, causing intracellular acidification. Similarly, an antibody

targeting the b catalytic subunit of F1F0 ATPase has an angiosta-

tin-like antiangiogenic effect (Chi et al., 2007). These results hint

at the possibility of using a single agent that targets the cell-

surface F1F0 ATPase for subverting cancer-associated angio-

genesis and metabolic reprogramming.

Tissue Invasion and Metastasis

One mechanistic link between tumor metabolism and invasion/

metastasis is provided by HIF. HIF-1a activation causes the

loss of E-cadherin (Esteban et al., 2006; Pouyssegur et al.,

2006), the cadherin isoform that is required for the maintenance

of intercellular contacts within epithelia and that is lost during the

epithelium-mesenchyme transition (EMT). HIF-1a activation also

causes the expression of the met proto-oncogene and of TWIST,

both of which favor EMT (Pennacchietti et al., 2003; Yang et al.,

2008), and induces two proteins that play a cardinal role in me-

tastasis, the chemokine receptor CXCR4 (Igney and Krammer,

2002) and lysyl oxidase (LOX) (Erler et al., 2006). Thus, one single

cause, HIF-1a activation, may entail both metabolic reprogram-

ming and enhanced tissue invasion/metastasis. Accordingly,

mtDNA mutations can stimulate the metastatic potential of

cancer cells, presumably because enhanced ROS generation

by mitochondria leads to the activation of HIF-1a (Ishikawa

et al., 2008).

Aerobic glycolysis (and hence enhanced production of pro-

tons) causes acidification of the extracellular milieu due to the

action of multiple proton-extruding enzymes. The monocarbox-

ylate transporters MCT1 and MCT4 (which cotransport H+ with

monocarboxylate anions such as lactate) and the ubiquitous

Na+-H+ exchanger are activated by growth factors, oncogenic

transformation, hypoxia, and low intracellular pH (Counillon

and Pouyssegur, 2000). In addition, cancer cells may use the

surface V-type H+ ATPase and/or the surface F1F0 ATPase as

proton pumps. Tumor cells often express the exquisitely HIF-

inducible carbonic anhydrase isoforms 9 and 12 (CA9 and

CA12). CA9 and CA12 are transmembrane enzymes that hydrate

extracellular CO2, thereby generating membrane-impermeable

H+ and HCO3
�. Rapid recapture of HCO3

� by anion transporters
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associated with CA9 as a ‘‘metabolome’’ (Morgan et al., 2007)

ensures maintenance of a normal intracellular pH, which in turn

is essential for cell survival (Pouyssegur et al., 2006; Swietach

et al., 2007). Extracellular acidity supports invasion and metasta-

sis, perhaps due to the pH-dependent activation of cathepsins

and metalloproteinases that degrade extracellular matrix and

basement membranes (Swietach et al., 2007). Irrespective of

these mechanistic details, it may be expected that pharmacolog-

ical inhibitors of the enzymes responsible for lactate production

and/or proton extrusion would have an antimetastatic effect, in

addition to reducing tumor growth.

Avoidance of Immunosurveillance

The metabolic microenvironment of tumor cells may inhibit the

function of antitumor immune effectors such as cytotoxic T lym-

phocytes (CTLs) and natural killer (NK) cells while attracting

inflammatory cells that participate in tumor progression.

Tumor-associated macrophages (TAMs) are often enriched in

hypoxic and tumor perinecrotic areas and constitute a negative

prognostic marker. Within TAMs, HIF-1 is essential to upregulate

glycolysis so that the cells can migrate into tumor beds (Cramer

et al., 2003). TAMs facilitate angiogenesis, promote tumor cell

migration, and exert local immunosuppressive effects (Condee-

lis and Pollard, 2006). As a result, pharmacological HIF-1 inhibi-

tion should—theoretically—reduce TAM infiltration into tumors.

Acidification of tumor beds can inhibit the activity of NK cells

(Lardner, 2001). Patients with high tumor burden have increased

serum lactate levels (Fischer et al., 2007), and lactate may exert

potent immunosuppressive effects, as seen in advanced cancer.

Thus, lactate suppresses the proliferation, cytokine production,

and cytolytic activity of CTLs. As a possible mechanism of this

immunosuppressive effect, extracellular lactate blocks the ca-

pacity of CTLs to export intracellular lactate by the monocarbox-

ylate transporter MCT1. The resulting lactate overload is incom-

patible with normal CTL functions (Fischer et al., 2007). Cancer

cells often overexpress indoleamine 2,3-dioxygenase (IDO), an

enzyme that catabolizes tryptophan (which is taken up by upre-

gulated L-type amino acid transporter 1 [LAT1]) to the kynurenine

pathway and oxidative stress. IDO overexpression has been

implicated in cancer-associated anorexia/cachexia (Munn and

Mellor, 2007), and kynurenine produced by tumor cells can kill

CTLs by apoptosis (Puccetti and Grohmann, 2007). These exam-

ples illustrate that therapeutic interventions designed to correct

abnormal tumor metabolism and, in particular, the inhibition of

proton extrusion, lactate production, or IDO might reestablish

a defective antitumor immune response.

Conclusions and Therapeutic Perspectives
As discussed above, alterations in cancer cell metabolism are in-

tricately linked to the principal hallmarks of cancer. These links

are established in several distinct scenarios. First, metabolic

reprogramming may be the consequence of nonmetabolic

oncogenic events. Thus, major oncogenic events (such as

constitutive activation of growth factor pathways, constitutive

activation of HIF-1, and inactivation of p53) may constitute the

common cause of metabolic programming and well-studied hall-

marks of cancer such as autonomous growth, resistance against

apoptosis, limitless replication, and angiogenesis (Figure 2 and

centrifugal arrows in Figure 3). Second, classical features of

cancer may be conditioned by metabolic reprogramming.
478 Cancer Cell 13, June 2008 ª2008 Elsevier Inc.
Thus, primary metabolic defects in OXPHOS may contribute to

apoptosis resistance, while local extracellular emanations of

the deregulated cancer cell metabolism may contribute to inva-

sion, metastasis, and immunosuppression (centripetal arrows in

Figure 3). Third, at an additional level of complexity, we must

consider coevolution of the distinct traits of malignancy. The

dual cause-effect relationship between tumor-specific meta-

bolic and nonmetabolic hallmarks is likewise conditioned by

the need of proliferating cancer cells to simultaneously subvert

multiple cell-intrinsic and cell-extrinsic tumor suppressor mech-

anisms and hence to emerge from a selection process that

forces the coevolution of all hallmarks of cancer, whether meta-

bolic or nonmetabolic.

Irrespective of these theoretical and speculative consider-

ations, the intimate relationship between cancer-associated

metabolic reprogramming and all other cardinal features has

therapeutic implications at several levels. First, therapeutic sub-

version of the nonmetabolic properties of cancer (interruption of

cell-autonomous growth signals, restoration of apoptosis, inhibi-

tion of angiogenesis, etc.) may suppress cancer-specific meta-

bolic programs and hence restore the normal state. This may ex-

plain the extraordinary performance of FDG-PET as a predictor

of therapeutic outcome (Bonnet et al., 2007). Second, inhibition

of the processes and enzymes that participate in metabolic

programming may have a dramatic effect on tumors, not only

by limiting cancer cell-specific bioenergetic flow and anabolic

reactions but also by reversing the neoplastic phenotype

and hence stopping growth, inducing apoptosis, and/or blocking

angiogenesis and invasion.

Such ‘‘dual hits’’ are exemplified by the inhibition of HIF (which

inhibits angiogenesis), reestablishment of p53 function (which

restores apoptosis and senescence), or suppression of the

PI3K/Akt/mTOR pathway (which inhibits growth), three interven-

tions that should also normalize metabolic functions (Figure 3).

Moreover, small inhibitors of enzymes that occupy a central

role both in cancer-specific metabolism and in other hallmarks

of cancer might be targeted for therapy (Table 2). For instance,

low-glucose conditions and inhibitors of glycolysis preferentially

induce apoptosis in ‘‘glucose-addicted’’ cells that carry active

oncogenes (e.g., Ras, Her2, and Akt) or lack tumor suppressors

(e.g., TSC1/2, LKB1, and p53) (Shaw, 2006). The HK2 inhibitor

3-bromopyruvate induces apoptosis in hepatocellular carcino-

mas in vitro and in vivo (Ko et al., 2004). This effect may involve

the inhibition of glycolysis as well as the dissociation of the anti-

apoptotic interaction between HK2 and VDAC (Kim et al.,

2007b), providing yet another example of a dual hit that has

been validated at the experimental level, in tumor-bearing

mice. Similarly, inhibition of PDK1 can restore PDH activity

(and OXPHOS) while triggering apoptosis in tumor cells in vitro

and in vivo (Bonnet et al., 2007).

The preclinical and clinical evaluation of metabolic inhibitors

for cancer therapy is in its infancy, perhaps with the notable

exception of mTOR antagonists (Faivre et al., 2006) and (unfortu-

nately rather nonspecific) activators of AMPK that are given as

oral antidiabetics and reduce the incidence of cancer (Evans

et al., 2006). The lack of enzymatic inhibitors acting at an accept-

able degree of specificity is one of the principal obstacles to

evaluating whether inhibition of bioenergetic and anabolic path-

ways, alone or in combination therapies, might finally target the
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Table 2. Potential Metabolic Targets for the Treatment of Cancer

Target Desired Effects Examples of Compounds Reference

Glycolysis

Glucose uptake Inhibition of glucose transport or

of the initial steps of glycolysis

2-deoxyglucose has

radiosensitizing and

chemosensitizing effects

Simons et al. (2007)

Hexokinase (HK1 and HK2) Inhibition of enzymatic activity and

dissociation from mitochondria

3-bromopyruvate has potent

antitumor effects in vitro and in vivo

Kim et al. (2007b);

Pedersen (2007)

Pyruvate dehydrogenase

kinase 1 (PDK1)

Inhibition of PDK1 for deinhibition

of pyruvate dehydrogenase

Dichloroacetate (DCA) Bonnet et al. (2007)

Lactate dehydrogenase A (LDHA) Inhibition siRNA Fantin et al. (2006)

Pyruvate kinase (PK) isoenzyme

PKM2

Translocation of PKM2 to the

nucleus for induction of apoptosis

Somatostatin and its derivative

TT-232 (in vitro)

Stetak et al. (2007)

Fatty Acid Synthesis

ATP citrate lyase (ACL) Inhibition SB-2049990 inhibits pancreatic

cancer growth in nude mice

Hatzivassiliou et al. (2005)

Acetyl-CoA carboxylase (ACC) Inhibition Soraphen A induces apoptosis

or autophagy in vitro

Beckers et al. (2007)

Fatty acid synthase (FASN) Inhibition Cerulenin and its derivative C57

inhibit human ovarian cancer

cell growth in SCID mice

Wang et al. (2005)

Choline kinase (ChoK) Inhibition MN58b reduces

phosphomonoesters in human

cancer xenografts

Al-Saffar et al. (2006)

HIF

HIF-1a prolyl hydroxylases (PHDs) Activation of PHDs for inhibition

of HIF, achieved by reversal of

fumarate- or succinate-mediated

inhibition of PHDs

Cell-permeating a-ketoglutarate

derivatives reverse HIV activation

in SDH- or FH-deficient cells

in vitro

MacKenzie et al. (2007)

Hypoxia-inducible factor 1 (HIF-1) Inhibition of DNA binding Echinomycin (Kong et al. (2005)

Reactive oxygen species (ROS) Antioxidants neutralize ROS

and reduce HIF-1 function

via PHDs and VHL

N-acetylcysteine (NAC);

vitamin C

Gao et al. (2007)

Hypoxia Cytotoxic effects of components

that are enriched in hypoxic cells

Tirapazamine (TPZ), a hypoxia-

activated prodrug, is in clinical

evaluation for combination

chemotherapy

Brizel and Esclamado (2006)

Proton Extrusion

Na+/H+ exchanger Inhibition Cariporide Pouyssegur et al. (2006)

Bicarbonate/Cl� exchanger Inhibition S3705 Pouyssegur et al. (2006)

MCT1 lactate/H+ symporter Inhibition a-cyano-4-OH-cinnamate Pouyssegur et al. (2006)

Carbonic anhydrases 9 and

12 (CA9 and CA12)

Inhibition Sulfonamide indisulam Thiry et al. (2006)

F1F0 ATP synthase Inhibition Angiostatin; antibodies Chi et al. (2007)

Other

AMPK Activation Biguanides (e.g., metformin)

and thiazolidinediones (e.g.,

troglitazone) activate AMPK

indirectly, probably through

inhibition of OXPHOS, and reduce

the risk of cancer in diabetic patients

Evans et al. (2006)

eIF4E Inhibition of translation initiation

mediated by eIF4E

Antisense oligonucleotide

inhibits growth of human

breast cancer xenografts

Graff et al. (2007)

L-type amino acid transporter 1

(LAT1)

Inhibition to reduce amino acid

transport

2-aminobicyclo (2.2.1)-heptane

2-carboxylic acid inhibits tumor

growth in a xenograft model

Nawashiro et al. (2006)
Cancer Cell 13, June 2008 ª2008 Elsevier Inc. 479

Administrator
Highlight



Cancer Cell

Review
Achilles’ heel of cancer. It can be anticipated that the develop-

ment of highly specific, preferentially isoenzyme-selective meta-

bolic inhibitors will generate an entirely novel armamentarium for

our battle against cancer.
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