Tumor Cell Metabolism: Cancer’s Achilles’ Heel

Guido Kroemer1,2,3,* and Jacques Pouyssegur4

1INSERM, U848, F-94805 Villejuif, France
2Institut Gustave Roussy, F-94805 Villejuif, France
3Université Paris Sud, Paris 11, F-94805 Villejuif, France
4Institute for Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, University of Nice, Centre Antoine Lacassagne, 33 Avenue Valombrose, F-06189 Nice, France
*Correspondence: kroemer@igr.fr
DOI 10.1016/j.ccr.2008.05.005

The essential hallmarks of cancer are intertwined with an altered cancer cell-intrinsic metabolism, either as a consequence or as a cause. As an example, the resistance of cancer mitochondria against apoptosis-associated permeabilization and the altered contribution of these organelles to metabolism are closely related. Similarly, the constitutive activation of signaling cascades that stimulate cell growth has a profound impact on anabolic metabolism. Here, we review the peculiarities of tumor cell metabolism that might be taken advantage of for cancer treatment. Specifically, we discuss the alterations in signal transduction pathways and/or enzymatic machineries that account for metabolic reprogramming of transformed cells.

Metabolic Reprogramming to the Advantage of Cancer Cells

The first tumor-specific alteration, altered metabolism, was discovered by the Nobel Prize winner Otto Warburg in the 1920s. The “Warburg phenomenon” consists of an increase in glycolysis that is maintained in conditions of high oxygen tension (“aerobic glycolysis”) and gives rise to enhanced lactate production (Brahimi-Horn et al., 2007; Warburg et al., 1924). In addition, or alternatively, cancer cells use elevated amounts of glucose as a carbon source for anabolic reactions. Although the Warburg phenomenon is not universally applicable to all cancers (Funes et al., 2007), enhanced glucose uptake is sufficiently prevalent that it is taken advantage of to image cancer in clinics using the glucose analog 2-(18F)-fluoro-2-deoxy-D-glucose (FDG) by positron emission tomography (PET). FDG-PET combined with computed tomography (PET/CT) has a >90% sensitivity and specificity for the detection of metastases of most epithelial cancers (Mankoff et al., 2007).

There are several reasons why enhanced glucose uptake for glycolytic ATP generation or anabolic reactions constitutes an advantage for tumor growth (Figure 1):

First, in conditions of aerobic glycolysis, cells can live in conditions of fluctuating oxygen tension (due to inconstant hemodynamics of distant blood vessels) that would be lethal for cells that rely on oxidative phosphorylation (OXPHOS) to generate ATP (Pouyssegur et al., 2006). Second, cancer cells generate bicarboxylic and bimolar acids, lactate being the principal end product of aerobic glycolysis. Such acids condition their environment (Koukourakis et al., 2006), favor tumor invasion (Swietach et al., 2007), and suppress anticancer immune effectors (Fischer et al., 2007). Lactate that is produced by tumor cells can be taken up by stromal cells (via the monocarboxylate transporters MCT1 and MCT2) to regenerate pyruvate that either can be extruded to refuel the cancer cell or can be used for OXPHOS (Koukourakis et al., 2006). This arrangement generates a microecosystem in which anaerobic components (cancer cells) and aerobic components (nontransformed stromal cells) engage in complementary metabolic pathways, thus buffering and recycling products of anaerobic metabolism to sustain cancer cell survival and growth.

Third, tumors can metabolize glucose through the pentose phosphate pathway (PPP) to generate nicotinamide adenine dinucleotide phosphate (NADPH) that ensures the cell’s antioxidant defenses against a hostile microenvironment and chemotherapeutic agents (Gatenby and Gillies, 2004). Moreover, NADPH can contribute to fatty acid synthesis. The nonoxidative part of the PPP (in which ribose 5-phosphate, an intermediate of the PPP, is fueled into glycolysis) is controlled by transketolase reactions, and the transketolase-1 isoform (TKL1) is overexpressed in multiple cancers (Foldi et al., 2007; Langbein et al., 2006).

Fourth, and most importantly, cancer cells use intermediates of the glycolytic pathway for anabolic reactions (for instance, glucose 6-phosphate for glycogen and ribose 5-phosphate synthesis, dihydroxyacetone phosphate for triacylglyceride and phospholipid synthesis, and pyruvate for alanine and malate synthesis) (Gatenby and Gillies, 2004). The embryonic isoform of pyruvate kinase (PK), which dephosphorylates phosphoenolpyruvate (PEP) to pyruvate, is highly expressed in tumors yet is absent from adult tissues except adipocytes (Christofk et al., 2008a). Interestingly, this isoform, PKM2, oscillates from high (tetrameric) to low (dimeric) activity (Christofk et al., 2008a; Mazurek et al., 2005). The low-active dimeric form of PKM2 provides the metabolic advantage that the phosphometabolites upstream of pyruvate accumulate and are then available as precursors for the synthesis of amino acids, nucleic acids, and lipids (Mazurek et al., 2005) while lactate production is avoided. This principle of “deviating” (at least part of the) intermediates from the glycolytic pathways toward anabolic reactions also applies to the metabolism of glycolytically derived pyruvate. In proliferating cancer cells, pyruvate may enter a truncated tricarboxylic acid (TCA) cycle. The net result of this truncated TCA cycle is that acetyl-CoA is exported from the mitochondrial matrix...
In normal cells, aerobic glycolysis implies the conversion of glucose via pyruvate into acetyl-CoA and its complete oxidation (through the mitochondrion-localized tricarboxylic acid [TCA] cycle and oxidative phosphorylation) to CO₂ and H₂O (which generates 38 ATP molecules per molecule of glucose). In contrast, in tumor cells, glycolysis tends to be aborted at either of two steps. First, aerobic glycolysis in tumor cells implies conversion of glucose into pyruvate (which generates only two ATP molecules per molecule of glucose) and subsequently into the waste product lactic acid. Second, in tumor cells, acetyl-CoA tends to be introduced into a truncated TCA cycle, with the net result that acetyl-CoA is exported into the cytosol and serves as a building block for cell growth and proliferation. In this truncated TCA cycle, citrate is preferentially exported to the cytosol via the tricarboxylate transporter. Once in the cytosol, citrate is cleaved by ATP citrate lyase (ACL) to generate oxaloacetate and acetyl-CoA. Oxaloacetate is reduced to malate, then reimported into mitochondria and reconverted to oxaloacetate in the matrix (while generating NADH that represses the TCA cycle), and it reacts with acetyl-CoA to complete the substrate cycle. Small arrows pointing up or down indicate cancer-associated upregulation/activation or downregulation/inhibition of enzymes, respectively. Alterations indicated in red can be caused by the activation of HIF-1. CA9 and CA12, carbonic anhydrases 9 and 12; CPT, carnitine palmitoyltransferase; GLUT, glucose transporter; GSH, glutathione; HIF, hypoxia-inducible factor; IDO, indoleamine 2,3-dioxygenase; HK, hexokinase; OXPHOS, oxidative phosphorylation; LAT1, L-type amino acid transporter 1; LDHA, lactate dehydrogenase isoform A; MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PFK, phosphofructokinase; P3K, phosphatidylinositol 3-kinase; PGM, phosphoglycerate mutase; PKM2, pyruvate kinase isoform M2; PPP, pentose phosphate pathway; SCO2, synthesis of cytochrome c oxidase 2; TLK, transketolase; VDAC, voltage-dependent anion channel.

Thus, the entire metabolism (in particular glycolysis and the TCA cycle) is reorganized to augment anabolic reactions linked to cell growth and proliferation. However, it would be difficult to reconcile enhanced lactate production (which would result in a net loss of carbon that could have been used for anabolic reactions) with reduced PK activity (which rather would reduce pyruvate and hence lactate production) and a truncated TCA cycle (which would consume pyruvate) unless the net consumption of glucose was much higher in cancer cells than in their normal counterparts.
inflammatory, metabolic, and oxidative stress (Harris, 2002; Semenza, 2007; Taylor and Pouyssegur, 2007). HIF-1 is a heterodimer composed of constitutive, stable β subunits and unstable α subunits, which are synthesized yet degraded under normoxic conditions due to the sequential action of oxygen-dependent prolyl hydroxylases (PHDs) and the VHL ubiquitin ligase. HIF-1 stimulates the conversion of glucose to pyruvate and lactate by upregulating glucose transporter (GLUT) isofrom 1 (GLUT1), hexokinase (HK1 and HK2, which catalyze the initial step of glycolysis), and lactate dehydrogenase A (LDHA), as well as the lactate-extruding enzyme monocarboxylate transporter 4 (MCT4) (Pouyssegur et al., 2006; Semenza, 2007).

In addition, HIF-1 decreases the conversion of pyruvate to acetyl-CoA by pyruvate dehydrogenase (PDH). For this, HIF-1 transactivates the gene encoding PDH kinase 1 (PDK1), which inhibits PDH (Kim et al., 2006; Papandreou et al., 2006). Acetyl-CoA is normally fed to the TCA cycle, producing the electron donors NADH and FADH₂, which donate electrons to the respiratory chain complexes I and II, respectively. Hence, by inhibiting PDH, HIF-1 compromises OXPHOS. In addition, HIF-1 facilitates the adaptation of mitochondria to hypoxia by transactivating the cytochrome c oxidase (COX) subunit COX4-2 and LON, a protease that degrades COX4-1 (Fukuda et al., 2007). HIF-1 counteracts the stimulatory action of Myc on mitochondrial biogenesis, thereby reducing mitochondrial mass (Zhang et al., 2007). In contrast, HIF-1 cooperates with c-Myc to promote aerobic glycolysis by induction of HK2 and PDK1 (Dang et al., 2008).

Besides a decrease in O₂ tension, HIF-1 can be induced as a result of tumorigenic germline mutations of two enzymes of the TCA cycle: the mitochondrial matrix protein fumarate hydratase (FH) and the inner mitochondrial membrane protein succinate dehydrogenase (SDH). SDH is also a functional member of complex II of the respiratory chain. Loss-of-function mutations of FH or of SDH subunits (SDHB, SDHC, and SDHD) induce the accumulation of the TCA cycle intermediates fumarate or succinate, which competitively inhibit the α-ketoglutarate-dependent HIF-1α, proline hydroxylase, the enzyme that usually targets HIF-1α for destruction in an oxygen-dependent fashion (Gottlieb and Tomlinson, 2005). These examples illustrate that induction of HIF-1 may contribute to the metabolic and oncogenic changes induced by primary mitochondrial dysfunctions.

Beyond the central role of HIF-1 activation, oncogenes and tumor suppressor genes determine metabolic reprogramming of cancer cells at several levels (Table 1), establishing multiple links between tumor cell biology and tumor biochemistry. Perhaps the most significant example of a switch from respiration to aerobic glycolysis is provided by the inactivation of the tumor suppressor p53, as discussed in the next section.

Hallmarks of Cancer Linked to Metabolic Change

Cancer cells differ from healthy cells due to a plethora of molecular changes (Hanahan and Weinberg, 2000; Zitvogel et al., 2006), many of which may be mechanistically linked to metabolic reprogramming (Figure 3).

Self-Sufficiency in Growth Signals

Growth factors usually activate receptor tyrosine kinases (RTKs), which then stimulate two key signal-transducing kinase pathways: the Ras → Raf → MAP kinase (ERK) pathway and the phosphatidylinositol 3-kinase (PI3K) pathway. ERK and PI3K converge to activate mTOR for stimulating cell growth. Most cancers harbor activating mutations of the master regulators (K-Ras, H-Ras, N-Ras, B-Raf, the p110a PI3K subunit, and RTKs) or their downstream effectors (such as the kinases Akt and PDK1), or inactivating mutations in negative regulators of these proteins (Shaw and Cantley, 2006) (Table 1). There are multiple mechanisms through which the constitutive activation of growth factor signals can cause cancer-associated metabolic reprogramming.

The activation of tyrosine kinases including RTK and Scr family kinases results in the phosphorylation of enzymes on tyrosine...
residues. This indirectly modulates the activity of the cancer-specific isoform of pyruvate kinase, PKM2, which can bind to phosphotyrosine-containing peptides (Christofk et al., 2008b). Upon interaction between PKM2 and such phosphotyrosine-containing peptides, PKM2 releases its allosteric activator, FBP. This results in the inhibition of PKM2 activity as PKM2 transits from its active tetrameric state to its inactive dimeric state (Christofk et al., 2008b). This mechanism may contribute to the stimulation of anabolic reaction by oncogenic tyrosine kinases. The partial inhibition of PKM2 (which catalyzes the last step of glycolysis, upstream of pyruvate) allows the intermediates of glycolysis to “deviate” toward anabolic reactions and simultaneously avoids excessive pyruvate production. However, PKM2 inhibition alone is not sufficient to account for the cancer-specific reprogramming, which relies on additional features including a general increase in glycolytic flux.

Cell-autonomous overactivation of the PI3K/Akt system, downstream of RTKs, mediates an increase in glucose and amino acid flux through the plasma membrane that may be attributable in part to the activation of HIF-1α (Pouyssegur et al., 2006). Akt stimulates the expression of one glucose transporter (GLUT1) and induces the translocation of another (GLUT4) to the

| Table 1. Metabolic Effects of Selected Oncogenes and Tumor Suppressor Genes |
|-----------------------------|---------------|-----------------|-----------------|
| Gene | Effects | Disease | Reference |
| **Oncogenes** | | | |
| PI3K | Activates Akt via PIP3; reduces (via Akt) expression of the β-oxidation enzyme carnitine palmitoyltransferase 1A (CPT1A) | Ovarian and gastrointestinal cancer | Deberardinis et al. (2006) |
| Akt | Upregulates fatty acid synthase (FASN); activates mTOR complex 1 | Breast and ovarian cancer | Wang et al. (2005) |
| Her2 | Increases, through activation of PI3K, Akt, and mTOR, expression of FASN and acetyl-CoA carboxylase α (ACCα) at the translational level | Mammary carcinoma | Yoon et al. (2007) |
| Tyrosine kinases | Generate phosphotyrosines that can bind to pyruvate kinase isoform PKM2, converting it from a tetramer to a less active dimer | Multiple cancers | Christofk et al. (2008b) |
| E7 from HPV16 | Binds PKM2, converting it from a tetramer to a less active dimer | Cervical carcinoma | Mazurek et al. (2005) |
| **Tumor Suppressors** | | | |
| p53 | Required for expression of SC02 and, hence optimal OXPHOS; enhances the expression of TIGAR, a glycolysis inhibitor; reduces the expression of the glycolytic enzyme phosphoglyceromutase | Multiple cancers | Matoba et al. (2006); Bensaad et al. (2006); Kondoh et al. (2005) |
| VHL | Ubiquitin ligase required for degradation of HIF-1α | Clear cell renal carcinoma | Shaw and Cantley (2006) |
| TSC1 (hamartin) and TSC2 (tuberin) | Negative regulators of Rheb (which inhibits mTOR) | Tubercous sclerosis complex and lymphangiopleioymyomatosis | Shaw and Cantley (2006) |
| PTEN | Negative regulator of class I PI3K | Cowden syndrome and prostate cancer | Shaw and Cantley (2006) |
| LKB1 | Required for activation of AMPK | Peutz-Jeghers syndrome and sporadic lung adenocarcinoma | Shaw and Cantley (2006) |
| NF1 | Negative regulator of RAS and PI3K-Akt pathway | Neurofibromatosis | Shaw and Cantley (2006) |
| PML | Negative regulator of mTOR complex 1 | Promyelocytic leukemia and lung cancer | Shaw and Cantley (2006) |
| Succinate dehydrogenase subunits SDHB, C, and D | Accumulated succinate competitively inhibits HIF-1α prolyl hydroxylases (PHDs) | Paraganglioma (SDHB, C, and D) and pheochromocytoma (SDHB and D) | Gottlieb and Tomlinson (2005) |
| Fumarate hydratase (fumarase) | Accumulated fumarate inhibits PHDs | Leiomyomatosis and papillary renal carcinoma | Gottlieb and Tomlinson (2005) |
Akt stimulates glycolysis through the activating phosphorylation of 6-phosphofructo-2-kinase (PFK2) and fatty acid synthesis through the phosphorylation of ATP citrate lyase (Manning and Cantley, 2007). Through mechanisms that are not fully elucidated, Akt stimulates the association of HK1 and HK2 with mitochondria (Pastorino et al., 2005), thus linking residual ATP synthesis by mitochondria to the catalysis of the first, rate-limiting step of glycolysis. In addition, PI3K causes the transcriptional downregulation of carnitine palmitoyltransferase 1A (CPT1A) (Deberardinis et al., 2006), an enzyme located in the outer mitochondrial membrane that esterifies long-chain fatty acids to carnitine, thereby initiating the mitochondrial import of fatty acids and channeling them to β-oxidation. One of the net effects of PI3K activation is hence an inhibition of β-oxidation, which may contribute to the “glucose addiction” of cancer cells (Deberardinis et al., 2006). PI3K activation also induces FASN, and the activating phosphorylation of Akt and FASN correlates in tissue microarrays (e.g., in ovarian cancer) (Wang et al., 2005).

mTOR, a serine/threonine kinase, is activated downstream of the constitutively activated PI3K/Akt system. mTOR enhances cap-dependent protein translation and cell growth while inhibiting catabolic reactions mediated by autophagy. Several clinical trials are currently examining the therapeutic efficacy of mTOR inhibitors (Faivre et al., 2006). Increased activation of the PI3K/Akt/mTOR pathway leads to phosphorylation of 4E-BP1, an inhibitor of the eukaryotic translation initiation factor eIF4E, resulting in increased eIF4E activity and cap-dependent translation in cancers. eIF4E overexpression can be tumorigenic, and its inhibition can suppress the growth of xenografted human cancers (Graff et al., 2007). Conversely, mTOR is inhibited by hypoxia, and breast cancers often overexpress 4E-BP1 and eIF4G to increase the cap-independent translation of proangiogenic, hypoxia, and survival mRNAs (Braunstein et al., 2007). Hence, the contribution of cap-dependent versus cap-independent translation to cancer growth remains to be investigated in further detail.

Evading Apoptosis

Defective apoptosis not only is crucial for initial oncogenesis but contributes to chemotherapy resistance. Cancer cells often manifest resistance against mitochondrial membrane permeabilization (MMP), which is one of the decisive steps of apoptosis (Kroemer et al., 2007). One link between apoptosis inhibition and metabolic reprogramming may be provided by the association of HK with the voltage-dependent anion channel (VDAC). HK has been shown to associate more tightly with the outer mitochondrial protein VDAC in tumor cells than in normal control cells (Pedersen, 2007). This increased HK-VDAC interaction may be due to the constitutive activation of Akt. Akt induces the translocation of HK to the outer mitochondrial membrane where it binds to VDAC, presumably because Akt interferes with the glycogen synthase kinase 3 (GSK3)-mediated phosphorylation of VDAC (Pastorino et al., 2005) or because Akt phosphorylates HK (Miyamoto et al., 2008). When associated with VDAC, HK may
efficiently couple residual OXPHOS to the initial, rate-limiting step of glycolysis. In addition, HK can inhibit MMP, presumably through an effect on the permeability transition pore complex (PTPC) (which also involves VDAC). Accordingly, peptides that competitively disrupt the VDAC-HK interaction can induce MMP and subsequent apoptosis (Robey and Hay, 2006). On theoretical grounds, such VDAC-HK-dissociating agents would have a dual effect and hence revert the hyperglycolytic state while facilitating apoptosis induction.

Complete or partial OXPHOS defects may also induce apoptosis resistance. Total inhibition of the respiratory chain can suppress the activation of the proapoptotic Bcl-2 proteins Bak and Bak, either of which serves as a near obligate mediator of MMP (Tomiyama et al., 2006). Thus, severe OXPHOS defects, as are found in some cancers, might be automatically coupled to a blockade of MMP and hence an inhibition of apoptosis. OXPHOS defects also reduce the capacity of certain xenobiotics to elicit ROS generation in mitochondria, thereby abrogating their proapoptotic activity. This latter mechanism may explain the fact that p53 cells (cells that lack mitochondrial DNA and hence OXPHOS) are resistant against a series of compounds that induce apoptosis by provoking futile redox cycles in mitochondria (Galluzzi et al., 2006; Kroemer et al., 2007). Thus, a state of deficient OXPHOS might automatically compromise the intrinsic pathway of apoptosis through a variety of distinct mechanisms.

Other links between mitochondrial alterations in cancer and disabled apoptosis are more indirect. A hyperpolarization of the inner mitochondrial transmembrane potential, as is frequently seen in cancer cells (perhaps secondary to defects in the F1F0 ATPase) (Galluzzi et al., 2006), can reduce the propensity of PTPC opening (Zoratti and Szabo, 1995). There is also a correlation between mitochondrial hyperpolarization and a relative deficiency in voltage-gated plasma membrane K+ channels (Kv), enhancing cytosolic K+ to a level that exerts a tonic inhibitory effect on caspases and apoptosis-inducing factor (AIF) (Bonnet et al., 2007). Pharmacological inhibition of PDK1, which is often overactivated in cancer, leads to reactivation of PDH and reportedly corrects both the activity of Kv channels and mitochondrial hyperpolarization, thereby inducing cancer cell apoptosis (Bonnet et al., 2007). Thus, PDK1 inhibitors may constitute yet another example of dual-hit agents that simultaneously reverse apoptosis resistance and metabolic reprogramming.

Limitless Replicative Potential
To ensure replicative potential, tumor cells often mutate or lose senescence-inducing proteins such as p53. Loss of p53 is also driven by Darwinian selection in a hypoxic environment, because hypoxia-mediated activation of p53 can trigger cell death (Culmsee and Mattson, 2005). As briefly stated above, inactivation of p53 can directly cause the Warburg phenomenon through several mechanisms. Thus, p53 positively regulates the expression of the protein synthesis of cytochrome c oxidase 2 (SCO2), which is required for assembling COX (Matoba et al., 2006). p53 negatively regulates phosphoglycerate mutase (PGM), the enzyme that converts 3-phosphoglycerate (3PG) to 2-phosphoglycerate (2PG) in glycolysis (Kondoh et al., 2005). Moreover, p53 transcriptionally activates TIGAR (TP53-induced glycolysis and apoptosis regulator), an isoform of PKF2 that inhibits overall phosphofructokinase activity, lowers the levels of FBP, and hence inhibits glycolysis (because FBP is an allosteric activator of the glycolytic enzyme 6-phosphofructo-1-kinase) while channeling glucose to the PPP (Bensaad et al., 2006). At present, there have been no systematic studies to determine through which dominant (SCO2-, PGM-, or TIGAR-dependent?) pathway inactivation of p53 impacts on cancer cell metabolism. Given the major contribution of p53 to cancer cell biology, this issue urgently awaits clarification.

Sustained Angiogenesis
Many tumors show increased expression of vascular endothelial growth factor (VEGF) as a result of activated signaling pathways (ERK, PI3K), an action that is amplified by hypoxia. Indeed, recent work indicates that the expression of VEGF is cooperatively induced by HIF-1 and c-Myc (Kim et al., 2007a). Another intriguing link between abnormal metabolism and cancer-mediated angiogenesis is provided by F1F0 ATPase. Both endothelial cells and tumor cells express the F1F0 ATPase (normally an inner mitochondrial membrane protein complex) at the cell surface, where it may extrude protons from the cytosol to the extracellular milieu and hence contribute to the net export of protons that is required to maintain aerobic glycolysis. An endogenous angiogenesis inhibitor, angiostatin, binds and inhibits surface F1F0 ATPase, causing intracellular acidification. Similarly, an antibody targeting the b catalytic subunit of F1F0 ATPase has an angiostatin-like antiangiogenic effect (Chi et al., 2007). These results hint at the possibility of using a single agent that targets the cell-surface F1F0 ATPase for subverting cancer-associated angiogenesis and metabolic reprogramming.

Tissue Invasion and Metastasis
One mechanistic link between tumor metabolism and invasion/metastasis is provided by HIF. HIF-1α activation causes the loss of E-cadherin (Esteban et al., 2006; Pouyssegur et al., 2006), the cadherin isoform that is required for the maintenance of intercellular contacts within epithelia and that is lost during the epithelium-mesenchyme transition (EMT). HIF-1α activation also causes the expression of the met proto-oncogene and of TWIST, both of which favor EMT (Penna-cchiatti et al., 2003; Yang et al., 2008), and induces two proteins that play a cardinal role in metastasis, the chemokine receptor CXCR4 (Igney and Krammer, 2002) and lysyl oxidase (LOX) (Erl er et al., 2006). Thus, one single cause, HIF-1α activation, may entail both metabolic reprogramming and enhanced tissue invasion/metastasis. Accordingly, mtDNA mutations can stimulate the metastatic potential of cancer cells, presumably because enhanced ROS generation by mitochondria leads to the activation of HIF-1α (Ishikawa et al., 2008).

Aerobic glycolysis (and hence enhanced production of protons) causes acidification of the extracellular milieu due to the action of multiple proton-extruding enzymes. The monocarboxylate transporters MCT1 and MCT4 (which cotransport H+ with monocarboxylate anions such as lactate) and the ubiquitous Na+-H+ exchanger are activated by growth factors, oncogenic transformation, hypoxia, and low intracellular pH (Couhillon and Pouyssegur, 2000). In addition, cancer cells may use the surface V-type H+ ATPase and/or the surface F1F0 ATPase as proton pumps. Tumor cells often express the exquisitely HIF-inducible carbonic anhydrase isoforms 9 and 12 (CA9 and CA12), CA9 and CA12 are transmembrane enzymes that hydrate extracellular CO2, thereby generating membrane-impermeable H+ and HCO3-. Rapid recapture of HCO3- by anion transporters...
associated with CA9 as a “metabolome” (Morgan et al., 2007) ensures maintenance of a normal intracellular pH, which in turn is essential for cell survival (Pouyssegur et al., 2006; Swietach et al., 2007). Extracellular acidity supports invasion and metastasis, perhaps due to the pH-dependent activation of cathepsins and metalloproteinases that degrade extracellular matrix and basement membranes (Swietach et al., 2007). Irrespective of these mechanistic details, it may be expected that pharmacological inhibitors of the enzymes responsible for lactate production and/or proton extrusion would have an antitumorigenic effect, in addition to reducing tumor growth.

Avoidance of Immunosurveillance

The metabolic microenvironment of tumor cells may inhibit the function of antitumor immune effectors such as cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells while attracting inflammatory cells that participate in tumor progression. Tumor-associated macrophages (TAMs) are often enriched in hypoxic and tumor perinecrotic areas and constitute a negative prognostic marker. Within TAMs, HIF-1 is essential to upregulate glycolysis so that the cells can migrate into tumor beds (Cramer et al., 2003). TAMs facilitate angiogenesis, promote tumor cell migration, and exert local immunosuppressive effects (Condeelis and Pollard, 2006). As a result, pharmacological HIF-1 inhibition should— theoretically— reduce TAM infiltration into tumors.

Acidification of tumor beds can inhibit the activity of NK cells (Lardner, 2001). Patients with high tumor burden have increased serum lactate levels (Fischer et al., 2007), and lactate may exert potent immunosuppressive effects, as seen in advanced cancer. Thus, lactate suppresses the proliferation, cytokine production, and cytolytic activity of CTLs. As a possible mechanism of this immunosuppressive effect, extracellular lactate blocks the capacity of CTLs to export intracellular lactate by the monocarboxylate transporter MCT1. The resulting lactate overload is incompatible with normal CTL functions (Fischer et al., 2007). Cancer cells often overexpress indoleamine 2,3-dioxygenase (IDO), an enzyme that catabolizes tryptophan (which is taken up by upregulated L-type amino acid transporter 1 [LAT1]) to the kynurenine pathway and oxidative stress. IDO overexpression has been implicated in cancer-associated anorexia/cachexia (Munn and Mellor, 2007), and kynurenine produced by tumor cells can kill CTLs by apoptosis (Puccetti and Grohmann, 2007). These examples illustrate that therapeutic interventions designed to correct abnormal tumor metabolism and, in particular, the inhibition of proton extrusion, lactate production, or IDO might reestablish a defective antitumor immune response.

Conclusions and Therapeutic Perspectives

As discussed above, alterations in cancer cell metabolism are intricately linked to the principal hallmarks of cancer. These links are established in several distinct scenarios. First, metabolic reprogramming may be the consequence of nonmetabolic oncogenic events. Thus, major oncogenic events (e.g., constitutive activation of growth factor pathways, constitutive activation of HIF-1, and inactivation of p53) may constitute the common cause of metabolic programming and well-studied hallmarks of cancer such as autonomous growth, resistance against apoptosis, limitless replication, and angiogenesis (Figure 2 and centrifugal arrows in Figure 3). Second, classical features of cancer may be conditioned by metabolic reprogramming. Thus, primary metabolic defects in OXPHOS may contribute to apoptosis resistance, while local extracellular emanations of the deregulated cancer cell metabolism may contribute to invasion, metastasis, and immunosuppression (centripetal arrows in Figure 3). Third, at an additional level of complexity, we must consider coevolution of the distinct traits of malignancy. The dual cause-effect relationship between tumor-specific metabolic and nonmetabolic hallmarks is likewise conditioned by the need of proliferating cancer cells to simultaneously subvert multiple cell-intrinsic and cell-extrinsic tumor suppressor mechanisms and hence to emerge from a selection process that forces the coevolution of all hallmarks of cancer, whether metabolic or nonmetabolic.

Irrespective of these theoretical and speculative considerations, the intimate relationship between cancer-associated metabolic reprogramming and all other cardinal features has therapeutic implications at several levels. First, therapeutic subversion of the nonmetabolic properties of cancer (interruption of cell-autonomous growth signals, restoration of apoptosis, inhibition of angiogenesis, etc.) may suppress cancer-specific metabolic programs and hence restore the normal state. This may explain the extraordinary performance of FDG-PET as a predictor of therapeutic outcome (Bonnet et al., 2007). Second, inhibition of the processes and enzymes that participate in metabolic programming may have a dramatic effect on tumors, not only by limiting cancer cell-specific bioenergetic flow and anabolic reactions but also by reversing the neoplastic phenotype and hence stopping growth, inducing apoptosis, and/or blocking angiogenesis and invasion.

Such “dual hits” are exemplified by the inhibition of HIF (which inhibits angiogenesis), reestablishment of p53 function (which restores apoptosis and senescence), or suppression of the PI3K/Akt/mTOR pathway (which inhibits growth), three interventions that should also normalize metabolic functions (Figure 3). Moreover, small inhibitors of enzymes that occupy a central role both in cancer-specific metabolism and in other hallmarks of cancer might be targeted for therapy (Table 2). For instance, low-glucose conditions and inhibitors of glycolysis preferentially induce apoptosis in “glucose-addicted” cells that carry active oncogenes (e.g., Ras, Her2, and Akt) or lack tumor suppressors (e.g., TSC1/2, LKB1, and p53) (Shaw, 2006). The HK2 inhibitor 3-bromopyruvate induces apoptosis in hepatocellular carcinomas in vitro and in vivo (Ko et al., 2004). This effect may involve the inhibition of glycolysis as well as the dissociation of the antiapoptotic interaction between HK2 and VDAC (Kim et al., 2007b), providing yet another example of a dual hit that has been validated at the experimental level, in tumor-bearing mice. Similarly, inhibition of PDK1 can restore PDH activity (and OXPHOS) while triggering apoptosis in tumor cells in vitro and in vivo (Bonnet et al., 2007).

The preclinical and clinical evaluation of metabolic inhibitors for cancer therapy is in its infancy, perhaps with the notable exception of mTOR antagonists (Fairev et al., 2006) and (unfortunately rather nonspecific) activators of AMPK that are given as oral antidiabetics and reduce the incidence of cancer (Evans et al., 2006). The lack of enzymatic inhibitors acting at an acceptable degree of specificity is one of the principal obstacles to evaluating whether inhibition of bioenergetic and anabolic pathways, alone or in combination therapies, might finally target the
<table>
<thead>
<tr>
<th>Target</th>
<th>Desired Effects</th>
<th>Examples of Compounds</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose uptake</td>
<td>Inhibition of glucose transport or of the initial steps of glycolysis</td>
<td>2-deoxyglucose has radiosensitizing and chemosensitizing effects</td>
<td>Simons et al. (2007)</td>
</tr>
<tr>
<td>Hexokinase (HK1 and HK2)</td>
<td>Inhibition of enzymatic activity and dissociation from mitochondria</td>
<td>3-bromopyruvate has potent antitumor effects in vitro and in vivo</td>
<td>Kim et al. (2007b); Pedersen (2007)</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase kinase 1 (PDK1)</td>
<td>Inhibition of PDK1 for deinihibition of pyruvate dehydrogenase</td>
<td>Dichloroacetate (DCA)</td>
<td>Bonnet et al. (2007)</td>
</tr>
<tr>
<td>Lactate dehydrogenase A (LDHA)</td>
<td>Inhibition</td>
<td>siRNA</td>
<td>Fantin et al. (2006)</td>
</tr>
<tr>
<td>Pyruvate kinase (PK) isoenzyme PKM2</td>
<td>Translocation of PKM2 to the nucleus for induction of apoptosis</td>
<td>Somatostatin and its derivative TT-232 (in vitro)</td>
<td>Stetak et al. (2007)</td>
</tr>
<tr>
<td>Fatty Acid Synthesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP citrate lyase (ACL)</td>
<td>Inhibition</td>
<td>SB-2049990 inhibits pancreatic cancer growth in nude mice</td>
<td>Hatzivassiliou et al. (2005)</td>
</tr>
<tr>
<td>Acetyl-CoA carboxylase (ACC)</td>
<td>Inhibition</td>
<td>Soraphen A induces apoptosis or autophagy in vitro</td>
<td>Beckers et al. (2007)</td>
</tr>
<tr>
<td>Fatty acid synthase (FASN)</td>
<td>Inhibition</td>
<td>Cerulenin and its derivative C57 inhibit human ovarian cancer cell growth in SCID mice</td>
<td>Wang et al. (2005)</td>
</tr>
<tr>
<td>Choline kinase (ChoK)</td>
<td>Inhibition</td>
<td>MN58b reduces phosphomonooesters in human cancer xenografts</td>
<td>Al-Saffar et al. (2006)</td>
</tr>
<tr>
<td>HIF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIF-1α prolyl hydroxylases (PHDs)</td>
<td>Activation of PHDs for inhibition of HIF, achieved by reversal of fumarate- or succinate-mediated inhibition of PHDs</td>
<td>Cell-permeating α-ketoglutarate derivatives reverse HIV activation in SDH- or FH-deficient cells in vitro</td>
<td>MacKenzie et al. (2007)</td>
</tr>
<tr>
<td>Hypoxia-inducible factor 1 (HIF-1)</td>
<td>Inhibition of DNA binding</td>
<td>Echinomycin</td>
<td>(Kong et al. 2005)</td>
</tr>
<tr>
<td>Reactive oxygen species (ROS)</td>
<td>Antioxidants neutralize ROS and reduce HIF-1 function via PHDs and VHL</td>
<td>N-acetylcysteine (NAC); vitamin C</td>
<td>Gao et al. (2007)</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Cytotoxic effects of components that are enriched in hypoxic cells</td>
<td>Tirapazamine (TPZ), a hypoxia-activated prodrug, is in clinical evaluation for combination chemotherapy</td>
<td>Brizel and Esclamado (2006)</td>
</tr>
<tr>
<td>Proton Extrusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na+/H+ exchanger</td>
<td>Inhibition</td>
<td>Cariporide</td>
<td>Pouyssegur et al. (2006)</td>
</tr>
<tr>
<td>Bicarbonate/Cl− exchanger</td>
<td>Inhibition</td>
<td>S3705</td>
<td>Pouyssegur et al. (2006)</td>
</tr>
<tr>
<td>MCT1 lactate/H+ symporter</td>
<td>Inhibition</td>
<td>α-cyano-4-OH-cinnamate</td>
<td>Pouyssegur et al. (2006)</td>
</tr>
<tr>
<td>Carbonic anhydrases 9 and 12 (CA9 and CA12)</td>
<td>Inhibition</td>
<td>Sulfonamide indisulam</td>
<td>Thiry et al. (2006)</td>
</tr>
<tr>
<td>F6F10 ATP synthase</td>
<td>Inhibition</td>
<td>Angiostatin; antibodies</td>
<td>Chi et al. (2007)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPK</td>
<td>Activation</td>
<td>Biguanides (e.g., metformin) and thiazolidinediones (e.g., troglitazone) activate AMPK indirectly, probably through inhibition of OXPHOS, and reduce the risk of cancer in diabetic patients</td>
<td>Evans et al. (2006)</td>
</tr>
<tr>
<td>eIF4E</td>
<td>Inhibition of translation initiation mediated by eIF4E</td>
<td>Antisense oligonucleotide inhibits growth of human breast cancer xenografts</td>
<td>Graft et al. (2007)</td>
</tr>
<tr>
<td>L-type amino acid transporter 1 (LAT1)</td>
<td>Inhibition to reduce amino acid transport</td>
<td>2-amino(bicyclo(2.2.1)-heptane 2-carboxylic acid inhibits tumor growth in a xenograft model</td>
<td>Nawashiro et al. (2006)</td>
</tr>
</tbody>
</table>
Achilles’ heel of cancer. It can be anticipated that the development of highly specific, preferentially isoenzyme-selective metabolic inhibitors will generate an entirely novel armamentarium for our battle against cancer.

ACKNOWLEDGMENTS

We thank N. Joza and L. Zhivogel for critical reading. G.K. and J.P. are both supported by the Ligue Nationale Contre le Cancer (Equipe Labellisée), Agence Nationale de Recherche, Cancéropôle Île-de-France and PACA, Institut National du Cancer, CNRS, and INSERM. G.K. is supported by the European Community (Active p53, ApoSys, ChemoRes, DeathTrain, TransDeath, and Right).

REFERENCES

