HYPOGONADISM IS A CLINICAL CONDITION IN WHICH LOW LEVELS OF serum testosterone are found in association with specific signs and symptoms, including diminished libido and sense of vitality, erectile dysfunction, reduced muscle mass and bone density, depression, and anemia (Table 1). When hypogonadism occurs in an older man, the condition is often called andropause, or androgen deficiency of the aging male.

Hypogonadism affects an estimated 2 million to 4 million men in the United States; its prevalence increases with age (Fig. 1). However, it has been estimated that only 5 percent of affected men currently receive treatment. Recent interest in testosterone therapy has been fueled not only by increased medical awareness of the effects of hypogonadism, but also by media attention regarding hormone-replacement therapy in both men and women, the marketing of new topical testosterone formulations, and the desire of “baby boomers” to maintain vigor and health into their more mature years.

Although reports indicate that testosterone-replacement therapy may produce a wide range of benefits for men with hypogonadism that include improvement in libido, bone density, muscle mass, body composition, mood, erythropoiesis, and cognition, considerable controversy remains regarding indications for testosterone supplementation in aging men.

Perhaps the most controversial topic in the ongoing discussion of testosterone-replacement therapy is the issue of risk (Table 2). Recent reports suggesting increased risks associated with hormone replacement in women have aroused concern that men receiving hormone replacement may also be vulnerable to increased health risks. However, no large-scale, long-term studies have yet been initiated to assess the benefits and risks of testosterone-replacement therapy in men, in part because of theoretical concern regarding the risks of therapy, especially possible stimulation of prostate cancer by testosterone.

Despite this controversy, testosterone supplementation in the United States has increased substantially over the past several years, with an increase of more than 500 percent in prescription sales of testosterone products since 1993. The purpose of this review is to discuss what is known and not known regarding the risks of testosterone-replacement therapy and to provide recommendations for the monitoring of men receiving testosterone treatment.

Forms of Testosterone Available for Administration

Injectable, transdermal, buccal, and oral testosterone formulations are available for clinical use in the United States, and other preparations are under development. These forms of treatment differ in several key areas, including their risk profiles.

Testosterone enanthate and testosterone cypionate are supplied as esterified oil-soluble preparations for injection. A typical dose is 100 mg per week, or 200 to 300 mg every...
two to three weeks. Peak serum levels occur 2 to 5 days after injection, and a return to base line is usually observed 10 to 14 days after injection. The advantages of this form of therapy include low cost and high peak serum levels of testosterone. The disadvantages include the pain of injection and the need for frequent medical visits for administration of the injections. A “roller coaster” effect can also occur, characterized by alternating periods of symptomatic benefit and a return to base-line symptoms, corresponding to the fluctuations in serum testosterone levels.4,17-19

Transdermal testosterone is available in either a scrotal or a nonscrotal skin patch and more recently has become available as a gel preparation. Daily application is required for each of these. They are designed to deliver 5 to 10 mg of testosterone per day. The advantages include ease of use and maintenance of relatively uniform serum testosterone levels over time.19,20 Skin irritation is a frequent adverse effect of testosterone patches but is uncommon with gel preparations.20,21 Inadequate absorption through the skin may limit the value of transdermal preparations in some persons.

Oral preparations available in the United States, such as methyltestosterone and fluoxymesterone, are infrequently prescribed, because of their association with substantial hepatotoxicity, including the development of benign and malignant neoplasms.22 Use of these agents is discouraged because of their potential toxicity.

Risks of Testosterone Replacement Therapy

Testosterone is a steroid hormone with actions in a wide variety of organs and tissues. The major sites of potential risks and side effects are discussed in detail below and are represented in Figure 2.

Testosterone Supplementation and Cardiovascular Risk

Coronary Artery Disease

The belief that testosterone is a risk factor for cardiac disease is based on the observation that men have both a higher incidence of cardiovascular events and higher testosterone levels than women. However, few, if any, data support a causal relation between higher testosterone levels and heart disease.25-26 Indeed, several studies suggest that higher testosterone levels may actually have a favorable effect on the risk of cardiovascular disease.27-30

Table 1. Hypogonadism.

<table>
<thead>
<tr>
<th>Definition*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypogonadism is a clinical condition characterized by low serum testosterone levels occurring in association with any of the signs and symptoms listed below</td>
</tr>
<tr>
<td>Sexual symptoms</td>
</tr>
<tr>
<td>Diminished libido</td>
</tr>
<tr>
<td>Erectile dysfunction</td>
</tr>
<tr>
<td>Difficulty achieving orgasm</td>
</tr>
<tr>
<td>Diminished intensity of the experience of orgasm</td>
</tr>
<tr>
<td>Diminished sexual penile sensation</td>
</tr>
<tr>
<td>Diminished energy, sense of vitality, or sense of well-being</td>
</tr>
<tr>
<td>Increased fatigue</td>
</tr>
<tr>
<td>Depressed mood</td>
</tr>
<tr>
<td>Impaired cognition</td>
</tr>
<tr>
<td>Diminished muscle mass and strength</td>
</tr>
<tr>
<td>Diminished bone density</td>
</tr>
<tr>
<td>Anemia</td>
</tr>
</tbody>
</table>

Treatment of hypogonadism with testosterone supplementation may result in clinical benefits in some, all, or none of these areas

Terminology

In older men, hypogonadism is often referred to as andropause, or androgen deficiency of the aging male

The causes of hypogonadism may be classified as primary (due to inadequate testicular Leydig-cell function), secondary (due to inadequate pituitary stimulation of the testes by luteinizing hormone), or combined (common in older men)

* The definition is adapted from the 2002 position statement on diagnosis, treatment, and monitoring of hypogonadism by the Sexual Medicine Society of North America, a specialty society of the American Urological Association.
Table 2. Potential Risks Associated with Testosterone-Replacement Therapy.

<table>
<thead>
<tr>
<th>Potential Risk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular disease</td>
<td>Existing evidence suggests a neutral or possible beneficial effect</td>
</tr>
<tr>
<td>Lipid alterations</td>
<td>Most studies show no change with physiologic replacement doses</td>
</tr>
<tr>
<td>Erythrocytosis</td>
<td>Wide range of risk, depending on mode of administration: 3–18% with transdermal administration, up to 44% with injection; requires monitoring</td>
</tr>
<tr>
<td>Fluid retention</td>
<td>Rarely of clinical significance</td>
</tr>
<tr>
<td>Benign prostatic hyperplasia</td>
<td>Rarely of clinical significance</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Controversial; unknown level of risk; requires long-term monitoring</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>Limited to oral agents, which are infrequently used in the United States</td>
</tr>
<tr>
<td>Sleep apnea</td>
<td>Infrequent</td>
</tr>
<tr>
<td>Gynecomastia</td>
<td>Rare, usually reversible</td>
</tr>
<tr>
<td>Skin reactions</td>
<td>High incidence with patch (up to 66%), low incidence with gel (5%), rare with injections</td>
</tr>
<tr>
<td>Acne or oily skin</td>
<td>Infrequent</td>
</tr>
<tr>
<td>Testicular atrophy or infertility</td>
<td>Common, especially in young men; usually reversible with cessation of treatment</td>
</tr>
</tbody>
</table>

Kabakci et al.24 failed to find any consistent relation between serum levels of free or total testosterone and coronary atherosclerosis in men undergoing coronary angiography. Similar results were reported by English et al.,29 who found that men with established cardiovascular disease documented by angiograms had lower levels of free and bioavailable testosterone than men with normal angiograms. In the population-based Rotterdam Study, serum levels of total and bioavailable testosterone were evaluated in 504 men; those in the highest two thirds of the study group in terms of these levels had age-adjusted relative risks of severe aortic atherosclerosis of 0.4 and 0.2, respectively, as compared with men in the lowest third.30 These results argue against a deleterious role of testosterone in the causation of cardiovascular disease in men.

Evidence that testosterone-replacement therapy may be beneficial for men with cardiac disease was provided by English et al., who found that 22 men with chronic stable angina who were treated with transdermal testosterone-replacement therapy had greater angina-free exercise tolerance than 24 placebo-treated controls.27 Furthermore, direct injection of physiologic levels of testosterone into the coronary arteries led to an increase in mean coronary-artery diameter and blood flow as compared with baseline.28 However, it is unknown how this observation may relate to cardiovascular risk during long-term testosterone supplementation.

In a study of 32 men treated for 52 weeks, Anderson et al.31 investigated the effects of supraphysiologic doses of testosterone (200 mg of intramuscular testosterone enanthate weekly) on factors involved in hemostasis and thrombosis, which are potential surrogates for cardiovascular disease. Decreases in prothrombotic factors, prothrombinase activity, and proteins C and S appeared to be counterbalanced by increases in antithrombin III activity and fibrinolytic activity. There was no effect on platelet activity.

Studies of testosterone-replacement therapy have not demonstrated an increased incidence of cardiovascular disease or events such as myocardial infarction, stroke, or angina.32 Although the data appear reassuring, definitive assessment of the long-term effects of testosterone-replacement therapy on cardiovascular health will require prospective, large-scale, placebo-controlled studies.

LIPID PROFILES
Available data regarding the relation of testosterone-replacement therapy to lipid profiles are inconsistent. Supraphysiologic doses of androgens, particularly oral nonaromatizable androgenic steroids, appear to lower high-density lipoprotein (HDL) levels.33 However, numerous controlled studies using physiologic replacement doses of testosterone have shown no change, or only a minimal reduction, in HDL, often accompanied by a reduction in total cholesterol.6,9,11,20,33-37 Whitsel et al.38 performed a meta-analysis of the effects of intramuscular testosterone esters on serum lipids in men with hypogonadism and reported that HDL levels were reduced in 3 studies and unchanged in 15. Total cholesterol levels were reduced in 5 studies, increased in 2, and unchanged in 12. Low-density lipoprotein (LDL) levels were unchanged or reduced in 14 of the 15 studies in which they were measured. Thus, the limited information available would suggest a neutral effect of testosterone-replacement therapy on lipid profiles.

Some of the variability in the effects of testosterone-replacement therapy on lipids may be explained by dosage. In one study,33 61 eugonadal men 18 to 35 years old were randomly assigned to five groups receiving monthly injections of long-acting gonadotropin-releasing hormone agonist to sup-
press endogenous testosterone secretion and weekly injections of testosterone enanthate (25, 50, 125, 300, or 600 mg) for 20 weeks. There were no changes in total cholesterol, LDL, very-low-density lipoprotein, triglycerides, or C-reactive protein levels, glucose metabolism, or insulin sensitivity at any dose of testosterone. Only the highest dose of testosterone (600 mg per week), well into the supra-physiologic range, was associated with a significant reduction in HDL, and a small, nonsignificant increase in HDL was seen with the lowest dose.

Transdermal administration of testosterone also appears to have minimal effects on lipid profiles. A double-blind, placebo-controlled study involving 108 healthy men receiving transdermal testosterone failed to show any significant difference between groups in serum levels of lipids and apolipoprotein during 36 months of treatment. In a 24-week, multicenter, randomized, parallel-group study, Dobs et al. compared transdermal and intramuscular administration of androgens in 58 men and did not detect any significant difference in HDL levels or in the ratio of total cholesterol to HDL in either group, regardless of the mode of therapy.

Thus, the present data, taken together, suggest that testosterone-replacement therapy within the physiologic range is not associated with worsening of the lipid profile.

POLYCYTHEMIA

Higher testosterone levels appear to act as a stimulus for erythropoiesis. Hemoglobin levels increase by 15 to 20 percent in boys at puberty, in parallel with increasing serum testosterone levels. Adult men have higher hemoglobin levels than adult women. Men with hypogonadism have lower hemoglobin levels than age-matched controls, and testosterone-replacement therapy can restore their hemoglobin levels to the normal range. The mild anemia prevalent in elderly men has been postulated to be due to declining testosterone levels.

Although a rise in the hematocrit is generally beneficial for patients with anemia, elevation above the normal range may have grave consequences, particularly in the elderly, since an attendant increase in blood viscosity could aggravate vascular disease in the coronary, cerebrovascular, or peripheral vascular circulation. The risk of hemoconcentration is greater if the patient also has a condition that may itself be associated with an increase in the hematocrit, such as chronic obstructive pulmonary disease.

Injections appear to be associated with a greater risk of erythrocytosis than topical preparations. Dobs et al. compared a transdermal nonscrotal testosterone patch with intramuscular injections of testosterone enanthate and observed that 15.4 percent and 43.8 percent of patients, respectively, had at least one documented elevated hematocrit value (defined as over 52 percent) during the course of the study. Erythrocytosis was associated with supraphysiologic levels of bioavailable testosterone and estradiol, and it occurred more frequently in the group that received intramuscular injections of testosterone.

Although Snyder et al. observed erythrocytosis in only 5.5 percent of patients using a scrotal transdermal testosterone patch, the mean hemoglobin and hematocrit values in the testosterone-treated group rose from slightly subnormal to mid-normal during treatment, with most changes occurring over the first three months. Wang et al. demonstrated...
ed a direct relation between testosterone dosage and the incidence of erythrocytosis. Erythrocytosis occurred in 2.8 percent of men receiving 5 mg per day by nonscrotal patches and in 11.3 percent and 17.9 percent of men treated with gel preparations of 50 mg per day (delivering 5 mg per day) and 100 mg per day (delivering 10 mg per day), respectively.

Although untoward events are unlikely with mild erythrocytosis of relatively short duration, the hematocrit or hemoglobin level should be monitored in men receiving testosterone-replacement therapy so that appropriate measures, such as dosage reduction, the withholding of testosterone, therapeutic phlebotomy, or blood donation, may be instituted if erythrocytosis develops. It is reassuring that as far as we can determine, no testosterone-associated thromboembolic events have been reported to date.

TESTOSTERONE-REPLACEMENT THERAPY AND THE PROSTATE

BENIGN PROSTATIC HYPERPLASIA

It is well recognized that the development of benign prostatic hyperplasia requires the presence of androgens and that the marked reduction in serum testosterone caused by chemical or surgical castration causes reduced prostate volume. However, multiple studies have failed to demonstrate exacerbation of voiding symptoms attributable to benign prostatic hyperplasia during testosterone supplementation, and complications such as urinary retention have not occurred at higher rates than in controls receiving placebo.

Prostate volume, as determined by ultrasonography, does increase significantly during testosterone-replacement therapy, mainly during the first six months, to a level equivalent to that of men without hypogonadism. However, urine flow rates, postvoiding residual urine volumes, and prostate voiding symptoms did not change significantly in these studies. This apparent paradox is explained by the poor correlation between prostate volume and urinary symptoms. Clinicians should nevertheless be aware that individual men with hypogonadism may occasionally have increased voiding symptoms with testosterone-replacement therapy.

PROSTATE CANCER

More than 60 years ago, Huggins et al. demonstrated that suppression of testosterone levels caused regression of prostate cancer, and it is now commonplace for men with metastatic prostate cancer to undergo treatment designed to lower testosterone levels. If lowering testosterone causes prostate cancer to regress, does elevating testosterone cause prostate cancer to appear? How does one evaluate this risk, given that a high proportion of men harbor microscopic foci of prostate cancer?

Case reports have suggested that testosterone-replacement therapy may convert an occult cancer into a clinically apparent lesion. An example is the report of an 85-year-old man in whom prostate cancer was diagnosed because of a rise in the prostate-specific antigen (PSA) level six months after testosterone-replacement therapy was initiated. However, one must be cautious in attributing causality to testosterone in these cases, since over 200,000 men are given a diagnosis of prostate cancer each year in the United States, and most of these cases are first detected by a rise in the PSA level unrelated to testosterone therapy.

To date, prospective studies have demonstrated a low frequency of prostate cancer in association with testosterone-replacement therapy. A compilation of published prospective studies of testosterone-replacement therapy (Table 3) revealed only 5 cases of prostate cancer among 461 men (1.1 percent) followed for 6 to 36 months, a prevalence rate similar to that in the general population. These studies were performed in men with hypogonadism of varying causes and degrees, who may or may not have received testosterone treatment before the prospective studies. No follow-up data beyond 36 months are available.

It is of some concern that the underlying prevalence of occult prostate cancer in men with low testosterone levels appears to be substantial, according to our own study in which 77 men with hypogonadism who had normal PSA levels and normal results on digital rectal examinations underwent sextant prostate biopsy before receiving testosterone-replacement therapy. Eleven men (14 percent of the subjects, with a median age of 64 years) had cancer. In a separate, retrospective study of men with known prostate cancer, high-grade prostate cancers were associated with low free testosterone levels. These findings may be explained in part by the observation that the levels of testosterone, luteinizing hormone, and follicle-stimulating hormone all increase after radical prostatectomy, suggesting that prostate cancer itself, or possibly even normal prostate tissue, may have an inhibitory effect on serum androgen levels. However, these reports do not address the clinical issue of
whether testosterone supplementation promotes clinical prostate cancer in men with hypogonadism.

Despite decades of research, there is no compelling evidence that testosterone has a causative role in prostate cancer. For example, studies using stored frozen plasma samples failed to show a difference in testosterone levels between men in whom prostate cancer developed 7 to 25 years later and those in whom it did not. In 2001, Hsing reviewed the 12 available prospective studies that examined the relation between serum androgen levels and prostate cancer. Only one study (the Physicians’ Health Study), a nested case–control study, suggested any significant relation between higher testosterone levels and prostate cancer. However, this study found no significant difference in mean testosterone levels between patients with prostate cancer and control subjects and no significant difference in the risk of cancer between men in the highest and lowest quartiles for serum testosterone. An increased risk of prostate cancer with higher testosterone levels was observed only after simultaneous adjustment for four other hormones. The clinical implications of this type of data analysis are uncertain.

Thus, there appears to be no compelling evidence at present to suggest that men with higher testosterone levels are at greater risk of prostate cancer or that treating men who have hypogonadism with exogenous androgens increases this risk. In fact, it should be recognized that prostate cancer becomes more prevalent exactly at the time of a man’s life when testosterone levels decline.

In our opinion, proper monitoring with measurement of PSA and digital rectal examination should promote the early diagnosis, and thus potential cure, of most “unmasked” prostate cancers identified during testosterone treatment. Certainly, all men presenting for possible testosterone-replacement therapy who are found to have an abnormal PSA level or abnormal result on digital rectal examination should first undergo prostate biopsy, and there should also be a low threshold for biopsy if the PSA level rises substantially (see below) or if there is a change on digital rectal examination, such as the development of a nodule, asymmetry, or areas of increased firmness (Tables 4 and 5). Although a history of prostate cancer has been considered an absolute contraindication to testosterone-replacement therapy, this point is now under active debate for men who are deemed cured.

Table 3. Prostate Cancer in Trials of Testosterone-Replacement Therapy

<table>
<thead>
<tr>
<th>Study</th>
<th>Duration</th>
<th>Increase in PSA</th>
<th>Prostate Cancer</th>
<th>Method of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hajjar et al. (1997)</td>
<td>24 mo</td>
<td>Placebo</td>
<td>Placebo</td>
<td>Intramuscular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Testosterone</td>
<td>0/27</td>
<td></td>
</tr>
<tr>
<td>Sih et al. (1997)</td>
<td>12 mo</td>
<td>0/15</td>
<td>0/17</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>Dobs et al. (1999)</td>
<td>24 mo</td>
<td>1/33</td>
<td>2/33</td>
<td>Intramuscular</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0/33</td>
<td>1/33</td>
<td>Nonscrotal patch</td>
</tr>
<tr>
<td>Snyder et al. (1999)</td>
<td>36 mo</td>
<td>7/54</td>
<td>13/54</td>
<td>Nonscrotal patch</td>
</tr>
<tr>
<td>Snyder et al. (2000)</td>
<td>36 mo</td>
<td>-</td>
<td>-</td>
<td>Nonscrotal patch</td>
</tr>
<tr>
<td>Wang et al. (2000)</td>
<td>6 mo</td>
<td>0/76</td>
<td>0/76</td>
<td>Nonscrotal patch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/73</td>
<td>0/73</td>
<td>Transdermal (100 mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4/78</td>
<td>1/78</td>
<td>Transdermal (50 mg)</td>
</tr>
<tr>
<td>Kenny et al. (2001)</td>
<td>12 mo</td>
<td>3/33</td>
<td>8/34</td>
<td>Nonscrotal patch</td>
</tr>
</tbody>
</table>

* An increase in prostate-specific antigen (PSA) was defined as any increase to a level above 4 ng per milliliter, except in the study by Snyder et al., in which it was defined as an increase of more than 1.5 ng per milliliter per year or an increase of 2.0 ng per milliliter between any two measurements.
A number of approaches exist regarding when to consider prostate biopsy or urologic referral for men with normal PSA levels at base line. These include the following:

- Perform biopsy or refer to urologist if PSA rises above 4.0 ng/ml or if it increases either by more than 1.5 ng/ml/yr or by more than 0.75 ng/ml/yr over 2 yr (Endocrine Society).
- Perform biopsy or refer to urologist if PSA rises above 4.0 ng/ml or if it rises either by more than 1.0 ng/ml in the first 6 mo of treatment or by more than 0.4 ng/ml/yr thereafter (Bhasin et al.).
- Perform biopsy before initiation of testosterone-replacement therapy. Repeat biopsy for PSA increase of 1.0 ng/ml in any year. If PSA rises by 0.7–0.9 ng/ml, repeat PSA measurement in 3–6 mo and perform biopsy for any further increase (Morgentaler et al.).

should be adopted. Although we recognize that this is an area under active investigation, the recommendations in this article are based on traditional PSA threshold values.

Testosterone trials in younger and older populations have inconsistently shown a rise in PSA, although the mean numerical increase of approximately 0.30 to 0.43 ng per milliliter is small (Table 3). A substantial increase in PSA arouses concern that prostate cancer has developed.

Although in the literature the PSA values used to trigger prostate biopsy include an increase of 1.5 ng per milliliter within two years or a total increase of 2.0 ng per milliliter over any period, these recommendations have been based on observational population studies in untreated men. However, men in whom prostate cancer is diagnosed during clinical trials have been identified by a rise in PSA, in a period of 12 months or less. On the basis of such reports, as well as concern about unmasking a previously occult cancer, it is our practice to perform prostate biopsy in any patient with a yearly PSA increase of 1.0 ng per milliliter or more. If the PSA level increases by 0.7 to 0.9 ng per milliliter in one year, we repeat the PSA measurement in three to six months and perform biopsy if there is any further increase. This approach is similar to other recently published recommendations.

OTHER POTENTIAL ADVERSE EFFECTS

HEPATIC EFFECTS

The use of oral preparations of testosterone has been reported to lead to hepatotoxic effects and neoplasia, including benign and malignant tumors. Testosterone undecanoate is an oral preparation that does not appear to have appreciable hepatotoxicity, but it is not available in the United States. Intramuscular injections and transdermal preparations do not appear to be associated with hepatic dysfunction, and routine monitoring with liver-function tests is therefore unnecessary for men receiving these forms of testosterone supplementation. The use of oral forms of testosterone in the United States is strongly discouraged because of the associated hepatotoxicity.

SLEEP APNEA

Testosterone-replacement therapy has been associated with exacerbation of sleep apnea or with the development of sleep apnea, generally in men treated with higher doses of parenteral testosterone who have other identifiable risk factors for sleep apnea. Upper-airway dimensions are unaffected by testosterone-replacement therapy, suggesting that androgen replacement contributes to sleep-disordered breathing by central mechanisms rather than by means of anatomical changes in the airway.
There is no universal agreement regarding target levels of replacement therapy, although many experienced clinicians aim for the mid- to upper-normal range in order to optimize the response to treatment. Treatment to raise levels above the physiologic range is discouraged, although it should be recognized that peak serum testosterone levels generally do rise transiently above the upper limit of normal with standard injection-therapy dosages.

If the patient reports an adequate clinical response to testosterone supplementation, there is no need for dosage adjustment, even if levels are in the low-normal range. If the clinical response is suboptimal and testosterone levels are no higher than the low-normal range, the testosterone dosage should be increased. If the maximal recommended dose of transdermal therapy has been prescribed without the achievement of adequate serum testosterone levels, consideration should be given to changing to intramuscular-injection therapy. For men receiving injection therapy, clinicians must interpret the results of blood tests on the basis of the interval since the most recent injection, recognizing that peak serum levels are obtained 2 to 5 days after injection and that the levels often return to base line by 10 to 14 days after injection. If the hematocrit rises above the reference range, consideration should be given to temporarily withholding testosterone-replacement therapy, reducing the dosage, or performing phlebotomy.

Monitoring for signs of prostate cancer is mandatory, given the widespread, albeit poorly substantiated, concern that testosterone treatment may stimulate the growth of an occult cancer. There is general agreement that men who present with an abnormal result on digital rectal examination or elevated PSA level should have a documented negative result from a prostate biopsy before testosterone-replacement therapy is initiated, since such men are at increased risk for prostate cancer.

Unfortunately, no clinical trials have addressed the issue of how to monitor for prostate cancer in men with normal digital rectal examinations and PSA levels. There are a number of approaches based on indirect clinical evidence and medical opinion (Table 5). The traditional approach has been to reserve prostate biopsy for those who have an abnormal digital rectal examination or a PSA level above 4.0 ng per milliliter during the course of treatment. Since a rapid rise in PSA, even at levels below 4.0 ng per milliliter, is also associated with prostate cancer, the Endocrine Society in 2001 recommended...
urologic evaluation for possible biopsy in men with a yearly PSA increase of 1.5 ng per milliliter or more, or 0.75 ng per milliliter per year or more over two years, in addition to men whose PSA level rises above 4.0 ng per milliliter.

These indications for biopsy are no different from those for men with normal testosterone levels. Yet men with hypogonadism may theoretically be predisposed to more rapid growth of an occult cancer on normalization of serum testosterone levels, and it may thus be prudent to have a lower threshold for biopsy in this population, especially during the first year of treatment. The proposal by Bhasin et al.64 for a standardized monitoring algorithm seems reasonable in this regard. In this algorithm, urologic referral for possible biopsy is recommended for patients with an increase in PSA of more than 1.0 ng per milliliter during the first six months of treatment or more than 0.4 ng per milliliter per year thereafter.

For the past 10 years, it has been our own practice to perform prostate biopsy before initiating testosterone treatment, since biopsy is the most definitive way to exclude the presence of cancer. However, we recognize that performance of a preliminary biopsy may be impractical for most clinicians and that others may regard this approach as overly aggressive, especially since the natural history of cancers identified solely because of the presence of low testosterone levels has not been determined. Once a negative biopsy result has been obtained, a repeated biopsy is reserved for men with a yearly increase in the PSA level of 1.0 ng per milliliter or more. For increases of 0.7 to 0.9 ng per milliliter, the PSA test is repeated in three to six months, and biopsy is performed if there is any further increase (Table 5).

In men who undergo an initial biopsy because of an elevated base-line PSA level, further biopsies should be reserved for those with increases in PSA of 1.0 ng per milliliter or more if the PSA level is under 10 ng per milliliter and those with yearly increases of 20 percent above the initial value if the PSA is 10 ng per milliliter or more.

There is no need to withhold testosterone treatment once a negative biopsy result has been obtained, since abnormalities in PSA levels or the results of digital rectal examination may be due entirely to benign causes. All of these recommendations may be modified for men less than 40 years old, since prostate cancer is uncommon in this age group.

Supported by a grant from Coordenação de Aperfeicoamento do Pessoal de Nível Superior (CAPES-Brazil) (to Dr. Rhoden).

REFERENCES

20. Wang C, Swerdloff RS, Iraniannes A, et al. Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal...
46. Slater S, Oliver RTD. Testosterone: its role in development of prostate cancer and potential risk from use as hormone replacement therapy: Drugs Aging 2000;17:431-9.